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Abstract

A Markovian bandit is a sequential decision problem in which the decision maker

has to activate a set of bandit’s arms at each time, and the active arms evolve in a

Markovian manner. There are two types of Markovian bandits: (i) rested bandits

where the arms that are not activated (i.e., are passive) remain frozen, and (ii)

restless bandits where the passive arms evolve in a Markovian manner. In general,

Markovian bandits suffer from the curse of dimensionality that often makes the exact

solution computationally intractable. So, one has to resort to tractable heuristics

such as index policies. Two celebrated indices are the Gittins index for rested bandits

and the Whittle index for restless bandits.

This thesis focuses on two questions (1) index computation when all model parame-

ters are known and (2) learning algorithms when the parameters are unknown.

For index computation, we point out the ambiguities in the classical indexability

definition and propose a definition that assures the uniqueness of the Whittle index

when this latter exists. We then develop an algorithm for testing the indexability

and computing the Whittle indices of a restless arm. The theoretical complexity of

our algorithm is O(S2.5286), where S is the number of arm’s states.

For learning in rested bandits, we propose modifications of PSRL and UCBVI al-

gorithms that we call MB-PSRL and MB-UCBVI. We show that they can leverage

Gittins index policy to have a regret guarantee and a runtime scalable in the number

of arms. Furthermore, we show that MB-UCRL2, a modification of UCRL2, also

has a regret guarantee scalable in the number of arms. However, MB-UCRL2 has a

runtime exponential in the number of arms. When learning in restless bandits, the

regret guarantee depends heavily on the structure of the bandit. We study how the

structure of arms translates into the structure of the bandit. We exhibit a subclass of

restless bandits that are not learnable. We also show that it is difficult to construct

a subclass of restless bandits with a desirable learning structure by only making

assumptions about arms.
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Résumé

Un bandit markovien est un problème de décision séquentielle dans lequel un sous-

ensemble de bras doivent être activés à chaque instant, et les bras évoluent de

manière markovienne. Il y a deux catégories de bandits markoviens. Si les bras

qui ne sont pas activés restent figés, on entre alors dans la catégorie des bandits

markoviens avec repos. S’ils évoluent de manière markovienne, on parle alors de

bandit markovien sans repos. En général, les bandits markoviens souffrent de la

malédiction de la dimension qui rend souvent la solution exacte prohibitive en terme

de calculs. Il faut donc recourir à des heuristiques telles que les politiques d’indice.

Deux indices célèbres sont l’indice de Gittins pour les bandits avec repos et l’indice

de Whittle pour les bandits sans repos.

Cette thèse se concentre sur deux questions : (1) le calcul d’indices lorsque tous les

paramètres du modèle sont connus et (2) les algorithmes d’apprentissage lorsque

les paramètres sont inconnus.

Pour le calcul de l’indice, nous relevons les ambiguïtés de la définition classique

de l’indexabilité et proposons une définition qui assure l’unicité de l’indice de

Whittle quand ce dernier existe. Nous développons ensuite un algorithme testant

l’indexabilité et calculant les indices de Whittle. La complexité théorique de notre

algorithme est O(S2.5286), où S est le nombre d’états du bras.

Pour l’apprentissage dans les bandits avec repos, nous montrons que MB-PSRL et

MB-UCBVI, des versions modifiées des algorithmes PSRL et UCBVI, peuvent tirer

parti de la politique d’indice de Gittins pour avoir une garantie de regret et un temps

d’exécution qui passent à l’échelle avec le nombre de bras. De plus, nous montrons

que MB-UCRL2, une version modifiée de UCRL2, possède également une garantie

de regret qui passe à l’échelle. Cependant, MB-UCRL2 a un temps d’exécution

exponentiel dans le nombre de bras. Lors de l’apprentissage dans les bandits sans

repos, la garantie de regret dépend fortement de la structure du bandit. Ainsi, nous

étudions comment la structure des bras se traduit dans la structure du bandit. Nous

exposons une sous-classe de bandits sans repos qui ne sont pas apprenables. Nous

montrons également qu’il est difficile de construire des hypothèses sur les bras qui

rendent les bandits sans repos apprenables efficacement.
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Introduction 1

1.1 Topic of the thesis

Markov decision processes (MDPs) are powerful models for solving stochastic opti-

mization problems. They suffer, however, from what is called the curse of dimension-

ality, which basically says that the state size of a Markov process is exponential in

the number of system components. This implies that the complexity of computing

an optimal policy is generally exponential in the number of system components. The

same holds for general-purpose reinforcement learning (RL) algorithms: they all

have a regret and a runtime exponential in the number of components, so they also

suffer from the same curse.

Very few MDPs are known to escape from this curse of dimensionality. One of the

most famous examples is the infinite horizon discounted rested bandit problem

which is a special case of Markovian bandit problem. In Markovian bandit problem,

a decision maker faces n MDPs (the n components, which we will call the n arms in

the rest of the thesis) and chooses m Æ n arms to activate at each decision epoch.

Markovian bandits have been applied to many resource allocations and scheduling

problems such as wireless communication [Rag+08; LZ10; ALT19], web crawling

[Niñ14; AB22], congestion control [Avr+13; APZ18], queueing systems [GKO09;

AAR09; ABG09; AAR11; LAV15; BP17; SHS18], and clinical trials [VBW15].

Markovian bandits are well-structured MDPs. They form a subclass of multi-armed

bandit problems in which each arm has an internal state that evolves in a Markovian

manner as a function of the decision maker’s actions. In such a problem, the decision

maker observes the state of all arms at each decision time and chooses which to

activate. When the state of an arm evolves only when this arm is chosen, one falls

into the category of rested Markovian bandits. When the state of an arm can also

evolve when the arm is not chosen, the problem is called a restless bandit problem. It

has been shown over the years that index policy, a strategy that requires computation

load linearly in number of arms, performs exceptionally well in Markovian bandit

problems [GM02; Ans+03; GRK06; Avr+13; AM19b]. Moreover, there is a subclass

of Markovian bandits in which index policy is shown to be optimal [Git79].

1



Two celebrated index definitions are Gittins index [Git79] for rested bandits and

Whittle index [Whi88] for restless bandits. Yet, as mentioned in [Whi96, Chapter 14],

the existence of Whittle index is guaranteed only for restless bandits that satisfy a so-

called indexability property. To the best of our knowledge, there are very few efficient

general-purpose algorithms to test indexability in restless bandits. Meanwhile, few

RL algorithms that leverage index policy in learning with Markovian bandits despite

its desirable computational complexity compared to dynamic programming solutions.

These raise two grand questions in this thesis:

• How to efficiently test indexability and compute Whittle index?

• Can index policy be a pillar for RL algorithms when learning in

Markovian bandits?

1.2 Contributions

Inspired by the challenging questions above, this thesis has several goals that can

be regrouped into two main parts: (1) efficiently test indexability and compute the

Whittle index for Markovian bandits and (2) learn with efficiency in Markovian

bandits.

Firstly, we design an efficient single algorithm that tests indexability and computes

Whittle index for both discounted and average reward restless bandits and Gittins

index for discounted rested bandits.

Secondly, we show that some RL algorithms can be tailored to discounted rested

bandits to have a regret bounded sublinearly in the number of arms and a runtime

linear in the number of arms.

Thirdly, we study the implication of the arms’ structure in the structure of bandit and

regret when learning in a restless bandit with average reward criterion. We show

that it is difficult to construct a subclass of restless bandits with desirable learning

structure by only making assumptions about arms.

To make these contributions explicit, we divide this thesis into three parts.

2 Chapter 1 Introduction



1.2.1 Part I: Background

In this part, we recall the existing problem setups and results in the literature. This

part serves as the basis for understanding our contributions and positioning them

among the vast literature of RL and Markovian bandits.

We present the formalism of Markov decision process (MDP) in Chapter 2: we give

the notations, optimization criteria, and the existing theoretical results in MDP. This

chapter is the central pillar of all the chapters that follow.

Chapter 3 consists of a summary of existing learning setups in RL, regret definition

that is used as a performance metric of learning algorithms, minimax regret lower

bound, and several existing results in RL with generic tabular MDPs.

We present the formalism of Markovian bandit in Chapter 4. We give the notations,

existing setups and optimization criteria in Markovian bandit literature. We finish

this chapter by outlining all the questions discussed in the following chapters.

1.2.2 Part II: Indexability

In this part, we present our contributions to the computational side of Markovian

bandit literature.

In Chapter 5, we point out the possible ambiguities in the classical definition

of indexability in restless Markovian bandits by providing a few simple counter-

examples. This leads us to introduce a new notion of Bellman optimality in the

MDP with long-run average reward criterion. This new notion is then used in our

definition of indexability, which is thoroughly detailed in the chapter. Then, we

give the corresponding Whittle index definition and illustrative examples. Finally,

we complete the chapter by studying the properties of Bellman optimality that are

useful for indexability tests and index computation.

In Chapter 6, we present a new algorithm to test the indexability presented in the

previous chapter and compute Whittle index of any finite state restless arm. It

is a single algorithm that tests indexability and computes Whittle index in either

discounted or average reward restless bandits, and the Gittins index in discounted

rested bandits. Moreover, to the best of our knowledge, this algorithm is the first to

achieve subcubic theoretical computational complexity. Indeed, if the considered

1.2 Contributions 3



arm has S states, then the best variant of our algorithm performs O(S2.5286) arith-

metic operations1. This is made possible by the sporadic use of the fastest matrix

multiplication method of [CW87] and the Sherman-Morrison formula. Thanks to

the current implementation of matrix multiplication in python, our algorithm is

implemented to run in subcubic time in python programming language. We also

present a few numerical experiments that witness the subcubic achievement of our

algorithm. The code of all experiments is available at https://gitlab.inria.f

r/markovianbandit/efficient-whittle-index-computation. All variants of

our implementation are available in the form of an open-source python package

installable by a simple command line: pip install markovianbandit-pkg. Finally,

we believe that our algorithm has room for improvement, such as exploiting the

sparse structure of the arms in Markovian bandits. We leave this question to future

work.

1.2.3 Part III: Learning in Markovian bandits

In this part, we present our contributions to the learning side of Markovian bandit

literature.

In Chapter 7, we consider an episodic RL problem in which the unknown environ-

ment is a rested Markovian bandit having n arms and S states per arm, and the

episode length is geometrically distributed. So, the bandit has Sn states in total.

Given that Gittins index policy is optimal and computationally efficient when the

bandit is known [Git79], we compare the optimism in face of uncertainty (OFU)

principle method with posterior sampling in terms of runtime and learning perfor-

mance encoded by regret. To do so, we adapt UCRL2 [JOA10] and UCBVI [AOM17],

two different algorithms from the OFU family, and PSRL [ORV13], an algorithm

from the posterior sampling family, to rested bandit with discount. The adapted

versions are respectively called MB-UCRL2, MB-UCBVI, and MB-PSRL, where “MB”

stands for Markovian bandit. We show that the three MB-* algorithms have a regret

bounded by Õ(S
Ô

nK), where K is the number of episodes. This is an exponen-

tial improvement in terms of the number of arms n. We also derive a Bayesian

minimax regret lower bound for learning algorithms in discounted rested bandit.

That is, any algorithm learning in discounted rested bandit suffers a regret that

is at least Ω(
Ô

SnK). For the computational aspect, we show that UCRL2 and its

variants that use extended value iteration [JOA10] cannot leverage Gittins index

policy to achieve efficient policy computation. This is because such algorithms

1multiplications and additions of real numbers, regardless of their values.
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rely on the confidence bonus on arms’ transition; which does not allow them to

guarantee the OFU principle when working on each arm independently of the other

arms. Lastly, we perform several numerical experiments that advocate the good

behavior of MB-PSRL. These experiments are reproducible by following this link

https://gitlab.inria.fr/kkhun/learning-in-rested-markovian-bandit.

While acknowledging that posterior sampling has a weaker regret guarantee, we

conclude that this approach has the upper hand in problem adaptability when com-

pared to OFU method. This is vital when working with problems having a special

structure such as weakly coupled MDPs.

Chapter 8 considers the RL problems in which the unknown environment is a

restless Markovian bandit with long-run average reward criterion. We study how

the structure of arms translates into the structure of the restless bandit. In particular,

we show that no RL algorithms can perform uniformly well in restless bandits whose

arms are unichain and have a bounded span of local bias function. This inspires

us to study the restless bandit whose arms all have no local transient state. We

provide an example in which a restless bandit is multichain even though its arms are

ergodic. Also, an ergodic restless bandit can have an arbitrarily large mixing time,

although its arms are ergodic and have a bounded mixing time. We also provide a

piece of positive result showing that if all arms are ergodic, then the restless bandit

is communicating. Moreover, if all arms have an ergodicity coefficient smaller than

1, then the corresponding restless bandit also has an ergodicity coefficient smaller

than 1. Finally, we discuss a few issues such as which policy to compare to in the

regret definition when learning general restless bandits. All of our arguments imply

that defining a subclass of restless bandits with desirable properties for learning is

essential but complex.

1.3 Organization of the thesis

We provide the thesis structure in Figure 1.1.

To facilitate the comprehension of this thesis, we suggest the following flow of read-

ing: One would want to start with Chapters 2 and 4, then Part II. Next, one should

jump back to Chapter 3 before diving into Part III and finishing the conclusion.

We highlight that Chapters 2 and 4 are required to understand our contributions in

Part II, and Part I is required to understand our contributions in Part III.

1.3 Organization of the thesis 5
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Chapter 2: Markov Decision Process

Part I: Background

Chapter 3: Reinforcement LearningChapter 4: Markovian Bandits

Chapter 5: Indexability

Part II: Indexability

Chapter 6: Index Computation Chapter 7: Learning Rested Bandit

Part III: Learning

Chapter 8: Learning Restless Bandit

Figure 1.1.: Thesis organization
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Part I

Background on Markov decision process,

reinforcement learning, and Markovian

bandit





Markov Decision Process 2
In this chapter, we define the notion of Markov decision process (MDP), a generic

model to solve Markovian bandit problem that we will describe in Chapter 4. MDP

is also used to mathematically describe the environment in the Reinforcement

Learning (RL) framework. An MDP models a discrete-time decision problem where

the decision maker executes available “action” over time steps and receives an

immediate incentive known as “reward” for each time step. In such a problem, the

decision maker seeks to maximize the expected cumulative rewards by identifying a

sequence of actions that produce such an effect.

In Section 2.1, we lay out the notation of MDP’s parameters and the dynamic of the

decision process. Then, in Section 2.2, we briefly present the finite-horizon setting.

Similarly, we present the classical settings for the infinite horizon in Sections 2.3

and 2.4.

2.1 Definitions and notations

In this section, we give the formalism of Markov decision process. We essentially

follow the notations of [Put14].

2.1.1 State, action, reward, and state transition

A Markov decision process M is defined as a 4-tuple M := ÈS, A, r, pÍ. S and

A := fisœSAs denote the state and action space of the MDP. When the MDP is in

state s œ S, the decision maker can execute one of the available actions in As. As a

result of executing action a œ As in state s, the MDP incurs a random reward with

the expected value r(s, a) and then transitions to a new state sÕ œ S with probability

p(sÕ | s, a) œ [0, 1], where
q

sÕœS p(sÕ | s, a) = 1. The name Markov comes from the

fact that the random reward and the next state depend only on state s and action

a and are independent of anything else. This thesis considers the MDPs with finite

state and action spaces, |S| =: S œ N, and |A| =: A œ N.
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2.1.2 Sequential decision problem and policy

In this thesis, the decision maker executes actions at discrete time steps. We denote a

decision time by t œ N
+ where N

+ := N \ {0} is the set of positive natural numbers.

At time step t Ø 1, the MDP is in state st, and the decision maker executes an action

at. The MDP incurs a (random) reward denoted by rt and transitions to the next

state denoted by st+1. This mechanism is repeated, and one obtains a sequence of

the form {s1, a1, r1, s2, . . . , st, at, rt, st+1, . . .} that is called history (also known as a

“trajectory”).

A deterministic decision rule fi is a mapping function from state space S to action

space A where for each s œ S, fi(s) œ As. A policy is a sequence of deterministic

decision rules {fi1, fi2, . . .} such that at time step t Ø 1, the decision maker follows

the policy by executing the action fit(st) œ A. With a slight abuse of notation, we

also denote a policy by fi = {fi1, fi2, . . .}. We denote the set of all policies by Π. We

say that a policy is stationary when the decision rules are invariant over time step,

fit = fi for all t Ø 1 and fi : S ‘æ A.

The state of the MDP at time step 1 is called the initial state and is generally drawn

from a probability distribution fl such that
q

sœS fl(s) = 1. Given the initial state s1,

a policy fi œ Π incurs a sequence {s1, a1, r1, . . . , st, at, rt, . . .} which is a stochastic

process with a well-defined probability distribution [Put14, Section 2.1.6]. We will

denote by P
fi(· | s1) the probability measure associated with this stochastic process

and denote by E
fi[· | s1] the corresponding expectation.

In the following sections, we specify the objective function of the decision problem.

2.2 Finite horizon problem

In the finite-horizon setting, the decision maker can collect rewards from an MDP M

over a fixed number of time steps H œ N
+ called the horizon. We call the expected

cumulative reward when following a policy fi as the value function. That is, the value

of state s when starting at time step 1 Æ h Æ H and following policy fi is given by

wfi
h:H(s):=E

fi
Ë
qH

t=h rt | sh=s
È

. Formally, the decision maker wants to find a policy

that satisfies

sup
fiœΠ

ÿ

sœS

fl(s)wfi
1:H(s). (2.1)

From [Put14, Chapter 4], there always exists an optimal policy fiú = {fiú
1, fiú

2, . . . , fiú
H}

that maximizes Equation (2.1) for any fl and such that for all 1 Æ h Æ H, fiú
h : S ‘æ A

10 Chapter 2 Markov Decision Process



is a deterministic decision rule and independent of the initial state distribution. For

each state s, we denote the optimal expected cumulative reward from s over time

steps h to H by wú
h:H(s):= maxfiœΠ wfi

h:H(s). The maximum value of Equation (2.1)

is given by
q

sœS fl(s)wú
1:H(s).

From [Put14, Chapter 4], the Bellman optimality equations in this setting are written:

for 1 Æ h Æ H ≠ 1 and s œ S,

wú
h:H(s) = max

aœAs

1

r(s, a) +
ÿ

sÕœS

p(sÕ | s, a)wú
h+1:H(sÕ)

2

(2.2)

and wú
H:H(s) = maxaœAs r(s, a). So an optimal policy fiú can be constructed using

backward induction on Equation (2.2): for each state s

• fiú
H(s) = arg maxaœAs

r(s, a);

• for h from H≠1 to 1, fiú
h(s) = arg maxaœAs

1

r(s, a)+
q

sÕœS p(sÕ | s, a)wú
h+1:H(sÕ)

2

where the ties are broken arbitrarily.

Finally, from [Put14, Chapter 4] the value function also satisfies the Bellman evalua-

tion equations: given a policy fi, for 1 Æ h Æ H and s œ S,

wfi
h:H(s) = r

1

s, fih(s)
2

+
ÿ

sÕœS

p
1

sÕ | s, fih(s)
2

wfi
h+1:H(sÕ) (2.3)

with wfi
H+1:H(s) = 0.

2.3 Infinite horizon discounted problem

In some problems, the decision maker can collect rewards over an infinite number

of time steps, and the immediate reward incurred by the MDP is more critical than

those rewards in the future time steps. To capture this aspect, one can introduce a

discount factor denoted by “ where “ œ [0, 1). If “ = 0, the decision maker is solely

interested in the immediate reward from the current state of the MDP. The value of

state s when following a policy fi is defined by vfi
“ (s) := E

fi
Ë
q+Œ

t=1 “t≠1rt | s1 = s
È

. It

captures the cumulative discounted reward one would expect when starting from

state s and following policy fi. The decision maker wants to find a policy that

satisfies

sup
fiœΠ

ÿ

sœS

fl(s)vfi
“ (s). (2.4)

2.3 Infinite horizon discounted problem 11



From [Put14, Chapter 6], there always exists a stationary optimal policy fiú : S ‘æ A

that maximizes Equation (2.4) for any initial distribution fl. For any s, since 0 Æ “ <

1, vfi
“ (s) is a geometric series that converges. So, vfi

“ (s) exists and is well-defined

for any state s and any policy fi œ Π. The value function of policy fi satisfies the

following Bellman evaluation equation: for each s œ S

vfi
“ (s) = r

!
s, fi(s)

"
+ “

ÿ

sÕœS

p
!
sÕ | s, fi(s)

"
vfi

“ (sÕ). (2.5)

The optimal value function is defined by vú
“(s) := maxfiœΠ vfi

“ (s) for all s œ S.

By [Put14, Theorem 6.2.5], the optimal value function vú
“ œ R

S is unique: any

optimal policies induce the same value function. Moreover, vú
“ satisfies the Bellman

optimality equation: for each s œ S

vú
“(s) = max

aœAs

1

r(s, a) + “
ÿ

sÕœS

p(sÕ | s, a)vú
“(sÕ)

2

. (2.6)

So, the maximum value of Equation (2.4) is given by
q

sœS fl(s)vú
“(s).

It is well-known that an optimal policy can be constructed as the following: for

all state s, fiú(s) = arg maxaœAs

1

r(s, a) + “
q

sÕœS p(sÕ | s, a)vú
“(sÕ)

2

, where the

ties are broken arbitrarily. This requires the optimal value function vú
“ , which is

approximated by iterative algorithms such as value iteration:

• initialize v0
“(s) = 0 for all s œ S

• iterate over k: vk+1
“ (s) = maxaœAs

1

r(s, a) + “
q

sÕœS p(sÕ | s, a)vk
“(sÕ)

2

for all

s œ S, then update k = k + 1 and repeat until
.
.
.vk+1

“ ≠ vk
“

.

.

. Æ (1 ≠ “)Á/“

where Î·Î can be the maximum norm or span semi-norm on R
S , and Á is the

accuracy of the approximation. From [Put14, Chapter 6], this iterative schema

always converges: limkæŒ vk
“ = vú

“ . Precisely, this schema stops after a finite

number of iterations K, where
.
.
.vK

“ ≠ vú
“

.

.

. Æ Á (see [Put14, Theorem 6.3.1]).

This setting with a discount factor “ can be seen as a finite-horizon setting whose

horizon is randomly sampled from a geometric distribution with parameter (1 ≠ “).

Precisely, the decision maker can stop interacting with the MDP with probability

(1 ≠ “) at each time step. So, the value of state s under stationary policy fi is the

expected sum of rewards over the random horizon:

vfi
“ (s) := E

fi

C
+Œÿ

t=1

“t≠1rt | s1=s

D

=E

C

E
fi

5 Hÿ

t=1

rt | H, s1=s

6D

= E [W fi
1:H(s)] , (2.7)
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where the expectation of the fourth term integrates over the randomness of the

horizon H whose expected value is 1/(1 ≠ “).

2.4 Infinite horizon average reward criterion

In some problems, the decision maker is more interested in the long-term average re-

ward per decision time than the expected cumulative discounted reward. Therefore,

we focus on this criterion in this section.

2.4.1 Gain and bias

Formally, the decision maker wants to identify a policy that satisfies

sup
fiœΠ

ÿ

sœS

fl(s) lim inf
T æ+Œ

1

T
E

fi

C
Tÿ

t=1

rt | s1 = s

D

. (2.8)

Since the state space is finite, the infimum limit of Equation (2.8) equals the supre-

mum limit for any stationary policy fi (see [Put14, Chapter 8]). Hence, the limit of

Equation (2.8) exists and is called the long-run average reward or gain of state s

under policy fi. Concretely, it is defined by

gfi(s) := lim
T æ+Œ

1

T
E

fi

C
Tÿ

t=1

rt | s1 = s

D

. (2.9)

This notion generalizes both the finite horizon and the discounted settings when

H æ +Œ or “ æ 1 because it is shown (see [Put14, Sections 8.2.1 and 8.2.2])

that

lim
Hæ+Œ

1

H
wfi

1:H(s) = gfi(s) and lim
“æ1

(1 ≠ “)vfi
“ (s) = gfi(s). (2.10)

In consequence, if fi and fiÕ are two stationary policies such that gfi(s) < gfiÕ

(s), then

for H big enough and “ close enough to 1, wfi
1:H(s) < wfiÕ

1:H(s) and vfi
“ (s) < vfiÕ

“ (s).

The gain of a stationary policy captures the average reward obtained in the steady

regime (or asymptotic regime). Another quantity associated with a stationary policy

fi is its bias function, defined by: for each s œ S

hfi(s) := C- lim
T æ+Œ

E
fi

C
Tÿ

t=1

rt ≠ gfi(st) | s1 = s

D

. (2.11)
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The Cesaro-limit denoted by C-lim is used because it is well-defined for any sta-

tionary policies, albeit the “classical” limit may not exist for a stationary policy

that induces a stochastic process governed by a periodic Markov chain. The bias

function captures the expected total difference between the reward and the average

reward in the steady regime. The difference of bias values hfi(s) ≠ hfi(sÕ) captures

the (dis-)advantage of starting at state s rather than sÕ when following policy fi.

We denote by sp(hfi) := maxsœS hfi(s) ≠ minsœS hfi(s) the range or span of the bias

function of policy fi.

Any stationary policy fi induces a Markov reward process (MRP), where the reward

function and state transition are encoded by vector rfi and stochastic matrix P fi

such that for any s, sÕ œ S, rfi(s) := r
!
s, fi(s)

"
and P fi(s, sÕ) := p

!
sÕ | s, fi(s)

"
.

The gain and bias can be computed using Bellman evaluation equations given in

Proposition 2.1.

Proposition 2.1 ([Put14, Theorem 8.2.6])

For any stationary policy fi, the gain gfi and bias hfi satisfy the following system

of Bellman evaluation equations: for any s œ S

g(s) ≠
ÿ

sÕœS

P fi(s, sÕ)g(sÕ) = 0 (2.12)

g(s) ≠ rfi(s) + h(s) ≠
ÿ

sÕœS

P fi(s, sÕ)h(sÕ) = 0. (2.13)

Moreover, suppose that g and h satisfy (2.12) and (2.13). Then, gfi = g and

hfi = h + u where u(s) =
q

sÕœS P fi(s, sÕ)u(sÕ) for all s.

Equations (2.12) and (2.13) uniquely define g and determine h up to an element

of the null space of (I ≠ P fi) where I is the identity matrix of size S ◊ S. If P fi is

unichain1, then we say that policy fi is unichain, and its gain is state independent:

gfi(s) = gfi(sÕ) for any s, sÕ œ S. So, for any policy fi that is unichain, we just denote

its gain by gfi. Moreover, if fi is unichain, its bias vector hfi is defined up to a constant

vector (see [Put14, Chapter 8]).

2.4.2 Classification of Markov decision processes

Since Equation (2.8) compares policies based on their average reward in the steady

regime, we need to take into account the chain structure induced by the policies. In

an MDP with a finite state space, the states are either transient or recurrent. A state

1we provide more explanation about unichain in (ii) of Definition 2.2.
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is transient if it is never visited in the steady regime. For more formal definition,

the reader may refer to [Put14, Appendix A] or [LPW17]. We classify the MDPs

according to the following definition.

Definition 2.2 (Classification of MDPs)

We say that an MDP is

(i) ergodic if the Markov chain induced by any stationary policy has a single

recurrent class that coincides the state space (i.e., all states are visited

infinitely often with probability 1 independently of initial state);

(ii) unichain if the Markov chain induced by any stationary policy is unichain,

i.e., it has a single recurrent class plus a –possibly empty– set of transient

states;

(iii) multichain if it is not unichain;

(iv) communicating if for every pair of states (s, sÕ) œ S, there exists a

stationary policy under which sÕ is accessible from s in a finite number of

time steps with non-zero probability

(v) weakly communicating if the state space can be partitioned into two

subsets SC and ST (with ST possibly empty), such that for every pair

of states (s, sÕ) œ SC, there exists a stationary policy under which sÕ is

accessible from s in finite time with non-zero probability, and all states in

ST are transient under all stationary policies.

With this definition, ergodic MDPs are special cases of unichain MDPs, and weakly

communicating MDPs generalize communicating MDPs. Moreover, ergodic MDPs

are communicating, and unichain MDPs are weakly communicating. Figure 2.1

summarizes this relation.

Testing if a Markov chain is unichain can be done in O(S2) using Tarjan’s strongly

connected component algorithm. Testing if an MDP is unichain is, however, NP-hard

[Tsi07].

2.4.3 Gain optimality

Similarly to the discounted setting, in MDPs with finite state and action spaces,

there always exists an optimal stationary policy fiú that satisfies Equation (2.8) for

any initial distribution fl (see [Put14, Theorem 9.1.8]). Such an optimal policy fiú

2.4 Infinite horizon average reward criterion 15



multichain

unichain

Not weakly communicating

Weakly communicating

Communicating

Ergodic

Figure 2.1.: MDP space: the portion of rectangle below the dashed line represents the set
of unichain MDPs, and the portion above the dashed line represents the set
of multichain MDPs. The blue rectangle is the set of weakly communicating
MDPs. The red rectangle on top of the blue one is the set of communicating
MDPs. Finally, the green rectangle on top of the red one is the set of ergodic
MDPs.

induces the optimal gain denoted by gú, and the value of Equation (2.8) is given by
q

sœS fl(s)gú(s). From [Put14, Chapter 9], the optimal gain gú satisfies the following

system of modified optimality equations: for each s œ S,

g(s) = max
aœAs

ÿ

sÕœS

p(sÕ | s, a)g(sÕ) (2.14)

g(s) + h(s) = max
aœAs

1

r(s, a) +
ÿ

sÕœS

p(sÕ | s, a)h(sÕ)
2

. (2.15)

[Put14, Chapter 9] also provides the optimality equations for gú, but we do not use

them in this thesis. So, we will just call (2.14) and (2.15) the Bellman optimality

equations.

The optimal gain gú is uniquely defined by (2.14) and (2.15). Any policies achieving

gú are said to be gain optimal (or average reward optimal): for any fi œ Π, gfi(s) Æ
gú(s) for all s œ S. By [Put14, Theorem 8.3.2], if an MDP is weakly communicating,

then the optimal gain is state independent: gú(s) = gú(sÕ) for any s, sÕ œ S. So, in

weakly communicating MDPs, we just denote the optimal gain by gú. Note that the

fact that the optimal gain is constant over states does not imply that all gain optimal

policies are unichain. Table 2.1 describes the gain of stationary policies in different

classes of MDPs. Finally, we denote hú œ R
S the vector that satisfies (2.15) with gú.

Model class Optimal gain Gain of a stationary policy
Ergodic Constant Constant
Unichain Constant Constant
Communicating Constant Possibly nonconstant
Weakly Communicating Constant Possibly nonconstant
Multichain Possibly nonconstant Possibly nonconstant

Table 2.1.: [Put14, Table 8.3.1]: Relationship between MDP class and gain
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Equations (2.14) and (2.15) do not uniquely defined hú. The properties of solution

space for hú given gú is studied in [SF78].
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Reinforcement Learning 3
In the previous chapter, we used the formalism of MDPs to describe how a decision

maker interacts with its environment. Depending on the chosen optimality criterion,

we explained how an optimal policy could be obtained when the parameters of

the MDP are fully known. In this chapter, we consider the case when the MDP’s

parameters are unknown and need to be learned by the decision maker via trial and

error. Also, we will use the term “learner” instead of1 “decision maker”.

Section 3.1 describes the existing settings in the reinforcement learning (RL) frame-

work. Then, we present the learning setting considered in this thesis and the

performance measure, namely the regret. In Section 3.4, we give the regret lower

bound for any learning algorithms. We finish the chapter by presenting two learning

approaches known as optimism in face of uncertainty principle and posterior sam-

pling in Section 3.5. We discuss several algorithms with regret guarantee at the end

of this chapter.

The reader can skip this chapter and go directly to Chapter 4 and Part II and return

to this chapter before diving into Part III.

3.1 A brief summary of existing learning setups

3.1.1 Models and paradigms of learning

Fundamentally, a RL problem consists of a learner interacting with an environment

modeled by an MDP M = ÈS, A, r, pÍ. The state and action spaces S and A are

known to the learner, but the expected value of reward r and state transition

probability p are unknown. So, we say that the MDP M is unknown to the learner.

The goal of the learner is to identify an optimal policy fiú by interacting with the

unknown MDP.

In the literature of RL, there are mainly two distinguishable learning models:

1We use the term “decision maker” when the parameters are known and “learner” when the parame-
ters are unknown.
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(i) Generative model: the learner chooses the state of the unknown MDP M at the

desire

(ii) Navigating model: the learner has no control over the state of M .

With the generative model, the learner picks any state-action pair (s, a), and the

MDP M incurs a random reward u, whose expected value is r(s, a), and the next

state sÕ œ S with probability p(sÕ | s, a). The learner collects the sample {u, sÕ}

related to the pair (s, a), and the process is repeated. This mechanism is often used

in offline learning paradigm (see e.g., [LGR12; Lev+20]), in which the learner starts

by collecting samples until a budget resource fixed by the setting is exhausted (it

can be a time resource, sample resource or approximation error). Then, the learner

plans a policy based on the collected samples and follows the policy. No more policy

update is made thereafter.

With the navigating model, the learner observes the current state s of the MDP M

and executes an action a. The MDP M incurs a random reward with the expected

value r(s, a) and transitions to state sÕ with probability p(sÕ | s, a). The learner

cannot force the MDP to restart in any state. If the learner wants the MDP to be

in a certain state, it has to go along the trajectory that brings the MDP from its

current state to the desired state. In some settings like the finite horizon or infinite

horizon with discount, the MDP M can restart, but the learner has no control over

the restart, such as when and in which state to restart. This mechanism is used in

online learning paradigm in which the learner keeps updating its policy based on

the observations it collects via the interaction with the MDP M (see e.g., [JOA10;

ORV13; AOM17; Ouy+17; ZB19]). The policy update can be done in every decision

time –known as the real-time update–, periodically, or when some conditions are

met –known as the episodic update.

3.1.2 Classification of learning algorithms

In either paradigm described above, there are two types of learning

• model-free: the learner tries to infer the value functions in the MDP;

• model-based: the learner tries to infer the unknown parameters r and p of the

MDP.

The typical algorithm for model-free methods is Q-learning [Wat89], which tries to

infer the optimal state-action value function via stochastic approximation. Model-

free method is very appealing when the MDP has a large or continuous state and
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action spaces (see e.g., [Mni+15; BDM17; Dab+18]). However, model-free methods

are generally slower than model-based ones in learning an optimal policy.

Model-based algorithms infer the value of r and p. They input the estimates of r

and p into a planning method described in the previous chapter, such as backward

induction, policy or value iterations, and follow the policy output by the planning

method (see e.g., [JOA10; ORV13; AOM17]). The main difference within model-

based algorithms is the way r and p are estimated at each planning phase. Model-

based algorithms are costly for MDPs with large or continuous state and action

spaces, but when applicable, they are usually faster than model-free algorithms.

Last but not least, for both model-free and model-based methods, statistical inference

provides two perspectives on the unknown MDP:

• frequentist perspective, in which all quantities related to the unknown MDP,

such as r, p, value function, etc, are seen as unknown deterministic quantities,

• Bayesian perspective, in which all quantities related to the unknown MDP, such

as r, p, value function, etc, are seen as a realization of random variables.

In frequentist school, the planning is decided before the learning begins, and the

observations collected during the learning are used to control the probability that

the plan is correct (see e.g., [JOA10; AOM17; Jin+18; Shi+22]). In Bayesian

school, the observations collected during the learning are used to update the

posterior of the random variables. The planning is then done based on the

posterior belief (see e.g., [ORV13; Ouy+17; BDM17; Dab+18]).

3.2 Learning setup studied in this thesis

In this thesis, the learner interacts with an MDP M = ÈS, A, r, pÍ, where the state

space S of size S and action space A of size A are known, but the expected value

of reward r and state transition probability p are unknown. Also, for any state-

action pair (s, a), the expected reward is bounded2 r(s, a) œ [0, 1]. At time step

t Ø 1, the MDP is in the state st, and the learner executes an action at. The MDP

incurs a random reward denoted by rt and transitions to the next state denoted

by st+1. This mechanism is repeated, and the learner observes a sequence of the

form {s1, a1, r1, s2, . . . , st, at, rt, st+1, . . .}, which is called observations (also known

as a “trajectory”). At time step t, the learner has in its disposition the observations

2in general, the expected reward is bounded in [0, rmax], where rmax Ø 1, but the interval can be
simply scaled down to [0, 1].
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up to time t denoted by ot := {s1, a1, r1, s2, . . . , st≠1, at≠1, rt≠1, st}. The learner’s

objective is to maximize the expected cumulative reward E

Ë
q

tØ1 rt

È

incurred by

the MDP by identifying an optimal policy fiú as early as possible. When the context

is clear, we will use the term “algorithm” to mean the learner.

This thesis focuses on model-based algorithms with episodic policy update in on-

line learning. We present the fundamental structure of episodic learning algorithms

in Algorithm 1. Basically, the algorithm takes the state space S and action space A

of the MDP M as input. The initial state s1 of M is drawn from some categorical

distribution over the state space S. Then, state s1 is revealed to the learning algo-

rithm. The algorithm computes a policy denoted by fi1, and episode 1 begins. During

episode k Ø 1, the algorithm executes action at = fik(st) and collects observations

{rt, st+1}. This process repeats until some specific conditions depending on the

setting are met. The episode k then terminates. Then, the algorithm computes a

new policy fik+1 based on its observations, and episode k + 1 begins.

Algorithm 1: Episodic learning algorithms
Input :The MDP M with state space S and action space A

1 Set t = 1 and observe initial state s1

2 for episodes k = 1, 2, . . . do

3 Set tk = t

4 Compute a new policy fik

5 while terminal condition is not met do

6 Execute action at = fik(st)
7 Observe rt and next state st+1

8 t Ω t + 1.

3.3 Regret definition

In online learning, there are at least two performance metrics: (1) probably approx-

imately correct (PAC) bounds on the sample complexity (see e.g., [BT02; KS02;

Kak03; DB15; JA18; Wan+20]) and (2) regret (see e.g., [JOA10; ORV13; AOM17;

Jin+18; ZB19; ZJ19]). The recent works often provide performance guarantees in

terms of both metrics (see e.g., [HZG21a; ZJD21]).

In this thesis, we measure the learner’s performance using a notion of regret that

compares the expected cumulative reward of an optimal policy fiú to the cumulative

reward of the learner.
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If a learner L interacts with the unknown MDP M over T œ N
+ time steps, we

denote by Regret(L, M, T ) the regret suffered by the learner. So, maximizing

the expected cumulative reward is equivalent to minimizing the expected regret,

E [Regret(L, M, T )].

The formal definition of regret depends on the setting of the learning problem. In

this section, we recall the definition in two settings: the finite horizon and infinite

horizon average reward criterion.

3.3.1 Finite horizon setting

In this setting, the learner interacts with the unknown MDP M over K œ N
+ episodes,

each episode lasts in H œ N
+ time steps (so the total time steps is T = KH), and

the state of M is reset according to a distribution fl. The terminal condition in

Line 5 of Algorithm 1 is simply t ≠ tk = H. In such a setting, H is called horizon,

and it is bounded in N
+. At the beginning of each episode k Ø 1, the initial state

of the MDP stk ≥ fl is revealed to the learner who computes a policy fik based on

its collected observations and follows the policy fik during the episode. Following

the definition in Section 2.2, we denote by wfik

1:H(s) := E
fik

[
qH

t=1 rt | s1 = s] the

expected cumulative reward from state s over time steps 1 to H when following

policy fi. The regret is defined by the following.

Definition 3.1

If a learner L interacts with an unknown MDP M over K episodes, each episode

ends in H œ N
+ time steps, then its regret is

Regret(L, M, K) :=
Kÿ

k=1

ÿ

sœS

fl(s)[wú
1:H(s) ≠ wfik

1:H(s)]. (3.1)

We say that a learner is “good” if its expected regret is sublinear in the number of

episodes K, i.e., E [Regret(L, M, K)] = o(K) when K æ +Œ.

3.3.2 Infinite horizon average reward criterion

For this setting, there is no reset on the MDP state, but the unknown MDP M is

assumed to be weakly communicating. This assumption is required so that the optimal

gain in M is state independent. The learner interacts with M over T time steps

and collects a sequence of rewards {rt}1ÆtÆT . The learner specifies the terminal
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condition at Line 5 of Algorithm 1 depending on how often it wants to update its

policy. The regret is defined by the following.

Definition 3.2

If a learner L interacts with an unknown MDP M which is weakly communicating,

then its regret after T time steps is

Regret(L, M, T ) := Tgú ≠
Tÿ

t=1

rt, (3.2)

where gú is the optimal gain of M (see its definition in Section 2.4).

So, a learner is “good” if its expected regret is sublinear in the total number of time

steps T , i.e., E
Ë

Regret(L, M, T )
È

= o(T ) when T æ +Œ.

3.4 Minimax regret lower bound

We compare the performance of good learners by how fast their regret tends to zero.

[JOA10] has proven that no learners can achieve a regret that is smaller than a

lower bound in all MDPs. We will give this lower bound below, but first, we need to

introduce the notion of the diameter of an MDP.

Definition 3.3

The diameter of an MDP is defined by

D := max
s,sÕœS

min
fi:S ‘æA

E
fi[·(sÕ) | s1 = s] ≠ 1, (3.3)

where ·(sÕ) := inf{t Ø 2 : st = sÕ} is the first time step when sÕ is reached.

So, the diameter of an MDP is the length of the longest shortest path in the MDP,

where the distance between any pair of vertices is 1. In other words, it is the expected

number of vertices along the shortest path between two states that are the most

distant from each other. From Definition 2.2 and [Put14, Proposition 8.3.1], it is

clear that the diameter D is finite if and only if the MDP is communicating.

Given any learner L, there always exists an unknown MDP M that slows down the

learner L as the following.
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Proposition 3.4 ([JOA10, Theorem 5])

In infinite horizon setting, for any learner L, any integers S, A Ø 10, D Ø
20 logA(S), and T Ø DSA, there is an MDP M = ÈS, A, r, pÍ whose diameter is

D such that for any initial state s1, the expected regret of L after T time steps is

lower bounded as

E [Regret(L, M, T )] Ø 0.015
Ô

DSAT. (3.4)

This proposition means that no matter how “good” a learner is, it is always possible

to construct a worst-case MDP M having S states, A actions and a diameter D such

that the learner suffers a regret Ω(
Ô

DSAT ) after T time steps in M . This bound on

worst-case regret is often referred to as “minimax” bound.

The minimax bound differs from the bounds given in [OPT18; BK97], which are

problem-dependent and asymptotic. Minimax bounds usually scale as
Ô

T while

problem-dependent bounds scale logarithmically3 with T . We refer to [OPT18;

BK97] for more detail about these problem-dependent bounds.

Minimax bound is often expressed in terms of the span (or range) of the optimal

bias function as well. In fact, the specific worst-case MDP constructed by [JOA10]

to prove the lower bound in Proposition 3.4 satisfies D = 2sp(hú), where hú is the

optimal bias function (see Section 2.4 for its definition). If H is an upper bound

on sp(hú), then the minimax bound is also expressed as Ω(
Ô

HSAT ). In recent

work of [ZJ19], the proposed algorithm, albeit no efficient implementation is given,

achieves a regret upper bounded by Õ(
Ô

HSAT ) (see [ZJ19, Theorem 1]). This

result suggests that the minimax bound in Proposition 3.4 cannot be improved.

For the finite horizon setting, the diameter of the MDP or the upper bound on

the span of the optimal bias function is replaced with the horizon of an episode.

So, the minimax bound can be immediately derived from Proposition 3.4: for any

learner, it is always possible to construct a worst-case MDP with S states and A

actions such that after K episodes, each of horizon4 H, the learner suffers a regret5

Ω(H
Ô

SAK).

3In the bandit literature, “problem-dependent” bounds are said to be distribution-dependent, as
opposed to minimax bounds which are said to be distribution-free [GMS19]

4For stochastic bandit, we have H = 1, S = 1 and K = T . So, the minimax bound is Ω(
Ô

AT ) as
given in [BC12]

5In time-inhomogeneous finite horizon setting, the minimax bound is Ω(H
Ô

HSAK) (see, e.g.,
[Jin+18; Dom+21]).
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3.5 Algorithms with regret guarantee

To get enough information for deriving fiú, the learner needs to explore the dynamic

of the MDP as much as possible. However, too much exploration equalizes the

learner’s performance with one that blindly chooses action at random. So, the

regret is linear in the total number of time steps. A good learner should then exploit

the gathered information as soon as possible. Unfortunately, untimely exploitation

leads to suboptimal policy; thus, a regret that is linear in T . This is the famous

“exploration versus exploitation dilemma” in RL problem.

To manage the exploration-exploitation dilemma, the two perspectives from statisti-

cal inference mentioned in Section 3.1.2 are adopted. In a frequentist perspective,

the learner L that maximizes the expected cumulative reward over T time steps

equivalently minimizes its expected regret E
5

Regret(L, M, T )

6

. To achieve this goal,

a common strategy in the frequentist paradigm is to apply the optimism in face of

uncertainty (OFU) principle: the learner maintains a confidence set for the unknown

MDP M and executes an optimal policy of the “best” MDP in the confidence set (it

is the best in terms of gain, or value function, etc.), e.g., [JOA10; FCG10; BT12;

AOM17; Fru+17; Jin+18; Fru+18; FPL18; ZB19; ZJ19; BMT20; Ort20].

In a Bayesian perspective, we say that the unknown MDP M is drawn according

to a probability distribution (prior or posterior) „. The learner minimizes a similar

notion of regret known as the Bayesian regret (or Bayes risk) defined by

BayesRegret(L, „, T ) := E

5

E

5

Regret(L, M, T ) | M

66

, (3.5)

where „ is the prior distribution of the unknown MDP M . In the Bayesian paradigm,

an efficient exploration-exploitation trade-off can be done by posterior sampling

introduced by [Tho33]: the learner keeps a posterior distribution over possible MDPs

(precisely, the support of the prior distribution) and executes an optimal policy of a

sampled MDP, see e.g., [ORV13; GM15; Ouy+17].

We summarize several existing results about minimizing the regret in Table 3.1 for

finite horizon setting and Table 3.2 for infinite horizon average reward criterion. The

results in Table 3.1 are a few because the minimax lower bound in the finite horizon

setting is achieved relatively early (ignoring the logarithmic terms). However, there

are a lot of works for finite horizon models such as [Jin+18; Dom+21; Li+21]

in which the reward and state transition depend on the time step (also known as

time-inhomogeneous, or non-stationary MDP) or [ZB19; ZJD21] in which the total

reward over H time steps is bounded by 1.
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The quest to the minimax regret lower bound for the infinite horizon setting is

longer compared to the finite horizon setting. With the average reward criterion, the

structure of the unknown MDP is vital. So, the works in Table 3.2 make different

assumptions on the MDP depending on the nature of the proposed algorithms.

In addition, policy computation is also a critical aspect of the infinite horizon

setting. Some algorithms in Table 3.2 only have a theoretical regret guarantee

and cannot be implemented efficiently. Precisely, either the implementation of

those algorithms takes an unreasonably long time to run or there is no possible

implementation. So, we say that they are intractable. However, the algorithms

that use value iteration, extended value iteration, or modified extended value

iteration are implementable, and their computational complexity is O(S2A) [JOA10].

Finally, Bayesian algorithms like PSRL and TSDE use planning methods described

in Chapter 2 for policy computation. It might seem that these algorithms are

computationally “efficient”, but they are “easily implementable” if the conjugate

prior has a closed-form expression. Otherwise, a sophisticated implementation might

be required for the sampling method such as Markov Chain Monte Carlo [And+03],

Sequential Monte Carlo [DJ+09], and Variational Inference [BKM17].

Algorithm Regret
PSRL [ORV13] Õ(HS

Ô
AT )

UCBVI-BF [AOM17] Õ(
Ô

HSAT )

EULER [ZB19] Õ(
Ô

HSAT )

Lower bound Ω(
Ô

HSAT ) [JOA10]
Table 3.1.: The quest to the minimax regret lower bound for model-based RL algorithms

in finite horizon setting with S states, A actions, and T = KH steps. K is the
total number of episodes and H is horizon of each episode.

3.6 Overview of regret analysis

As mentioned in Section 3.2, we consider model-based algorithms with episodic

policy update. Algorithm 1 shows how episodic algorithms work during learning.

For both optimism and posterior sampling methods, computing a new policy at

Line 4 of Algorithm 1 is composed of two steps

(i) compute an estimate Mk = ÈS, A, rk, pkÍ of the unknown MDP M ;

(ii) compute an optimal policy fik of Mk.
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Algorithm Regret Assump. on M Policy comp.
UCRL2 [JOA10] Õ(DS

Ô
AT ) comm. EVI

REGAL [BT12] Õ(HS
Ô

AT ) weakly comm. Intractable
TSDE [Ouy+17] Õ(HS

Ô
AT ) weakly comm. VI

SCAL [Fru+18] Õ(HS
Ô

AT ) weakly comm. modified EVI
OSP [Ort20] Õ(

Ô
tmixSAT ) ergodic Intractable

UCRL2B [FPL20] Õ(
Ô

ΓDSAT ) comm. EVI
EBF [ZJ19] Õ(

Ô
HSAT ) weakly comm. Intractable

Lower bound Ω(
Ô

DSAT ) [JOA10]
Table 3.2.: The quest to the minimax regret lower bound for model-based RL algorithms in

infinite horizon average reward model with S states, A actions, and T steps. D
is the diameter of the MDP, H Ø sp(h∗) is the upper bound on the span of the
optimal bias function, tmix is the mixing time of the MDP and Γ is the upper
bound on the number of the next possible states. EVI stands for Extended value
iteration [JOA10], VI for value iteration, assump. for assumption, comm. for
communicating, and comp. for computation. Intractable here means that there
is no efficient implementation.

We will say that Mk is the imagined version of the unknown M for episode k.

Since an optimal policy can be computed in a deterministic manner given the MDP,

the “high-level” difference between both approaches lies in Step (i) at which the

imagined MDP Mk is constructed: chosen “optimistically” by the OFU method or

chosen randomly by posterior sampling.

In the following, we provide an overview of regret analysis in the finite horizon

setting. The analysis will involve the value function associated with different MDPs.

So, we extend the notation in Chapter 2 as the following

• the optimal expected cumulative reward from the unknown MDP M between

time steps h and H is denoted by wfiú

M,h:H , where fiú is an optimal policy in M ;

• the optimal expected cumulative reward from the imagined MDP Mk between

time steps h and H is denoted by wfik

Mk,h:H
, where fik is an optimal policy in

Mk.

By Definition 3.1, the regret of a learner L after K episodes in an unknown MDP M

is

Regret(L, M, K) =
Kÿ

k=1

ÿ

sœS

fl(s)[wfiú

M,1:H(s) ≠ wfik

M,1:H(s)].
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The term wfiú

M ≠ wfik

M can be rewritten as

wfiú

M ≠ wfik

M = (wfiú

M ≠ wfik

Mk)
¸ ˚˙ ˝

=:∆k
model

+ (wfik

Mk ≠ wfik

M )
¸ ˚˙ ˝

=:∆k
conc

(3.6)

The first term ∆
k
model is the difference between the real but unknown optimal value

function and the imagined optimal value function. It is also understood as an error

due to model misspecification. Since M and fiú are unknown, this first term is hard

to be analyzed. However, we will see in the following that the term is non-positive

for the OFU methods or zero in expectation for posterior sampling.

The second term ∆
k
conc can be interpreted as the “dissimilarity” between the un-

known MDP M and the imagined MDP Mk along the trajectory induced by the

policy fik. In other words, it is the discordance between the value from Mk and the

value from M for policy fik. Since Mk and fik are chosen by the learner, ∆
k
conc can

be analyzed. OFU and posterior sampling methods use concentration argument to

bound this term ∆
k
conc.

3.7 Sketch of proof on regret bound of three algorithms

In this section, we revisit three algorithms: UCRL2 [JOA10] and UCBVI [AOM17],

which rely on the OFU method, and PSRL [ORV13], which is a posterior sampling

algorithm. We give the sketch of proof for their regret upper bound in the finite

horizon setting, although UCRL2 was originally designed for the infinite horizon

average reward criterion. We will provide detailed proof in Chapter 7 when we

adapt the three algorithms to Markovian bandit problems.

3.7.1 Upper confidence bound reinforcement learning (UCRL2)

[JOA10].

As mentioned above, UCRL2 was originally designed for the infinite horizon setting.

Here, we adapt UCRL2 to the finite horizon setting. When updating its policy, UCRL2

constructs confidence sets Br and Bp for r and p based on high probability confidence

bounds. We denote by M the set of plausible MDPs whose reward function lives in

Br and state transition lives in Bp. UCRL2 chooses the MDP that incurs the highest
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optimal value among the MDPs in M and computes an optimal policy of the chosen

MDP. That is, at Line 4 of Algorithm 1, UCRL2 computes a new policy fik such that

wfik

Mk Ø max
fiœΠ

max
M ÕœMk

wfi
M Õ , (3.7)

where

M
k :=

Ó

ÈS, A, rÕ, pÕÍ : for all (s, a), rÕ(s, a) œ B
k
r (s, a) and pÕ(· | s, a) œ B

k
p(s, a)

Ô

is the set of plausible MDPs compatible with the confidence sets for episode k. To do

so, UCRL2 uses extended value iteration (EVI). This is because EVI is designed such

that (3.7) holds. We refer to [JOA10] for the detail about EVI and its convergence

proof.

Let tk be the time step when the episode k begins and t1 := 1 (see Algorithm 1). The

observations up to time tk is denoted by otk :={s1, a1, r1, . . . , stk≠1, atk≠1, rtk≠1, stk}.

For all state-action pair (s, a), let Nk(s, a) be the number of times up to tk that the

algorithm executes action a when the MDP is in state s. At time step tk, UCRL2

uses the observations otk to compute r̂k and p̂k, the empirical means of r and p. The

confidence sets for reward and transition are then computed: for all state-action

pair (s, a),

B
k
r (s, a) :=

Ó

u œ [0, 1] :
-
-
-u ≠ r̂k(s, a)

-
-
- Æ —k

r (s, a)
Ô

,

B
k
p(s, a) :=

Ó

q œ [0, 1]S :
.
.
.q ≠ p̂k(· | s, a)

.

.

.
¸1

Æ —k
p (s, a) and ÎqÎ¸1

= 1
Ô

,

where —k
r (s, a) =

ˆ
ı
ı
ı
Ù

cr ln(SAtk)

2 max
1

1, Nk(s, a)
2 and —k

p (s, a) =

ˆ
ı
ı
ı
Ù

cpS ln(Atk)

max
1

1, Nk(s, a)
2 are the

confidence bonuses, and cr and cp are constants to be chosen accordingly before the

learning.

The set of plausible MDPs Mk is constructed to contain the unknown M with high

probability. Hence, by (3.7), wfik

Mk Ø wfiú

M with high probability. In consequence,

Equation (3.6) implies that the regret of UCRL2 is smaller than
q

k

q

s fl(s)[∆k
conc(s)]

with high probability. Using Bellman evaluation equation, the term ∆
k
conc(s) can be

rewritten as

wfik

Mk,1:H(s1) ≠ wfik

M,1:H(s1) = rk(s1, a1) +
ÿ

sÕœS

pk(sÕ | s1, a1)wfik

Mk,2:H(sÕ)

≠ r(s1, a1) ≠
ÿ

sÕœS

p(sÕ | s1, a1)wfik

M,2:H(sÕ), (3.8)
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where a1 = fik
1 (s1) and at = fik

t (st) for any 1 Æ t Æ H. The term pkwfik

Mk ≠ pwfik

M

equals (pk ≠p)wfik

Mk +p(wfik

Mk ≠wfik

M ). Since for any h Æ H and s œ S, wfik

Mk,h:H
(s) œ

[0, H] is not deterministic, the term (pk≠p)wfik

Mk is bounded using Hölder’s inequality.

So, we get

∆
k
conc(s1) Æ

Hÿ

t=1

-
-
-rk(st, at) ≠ r(st, at)

-
-
- +H

.

.

.pk(· | st, at) ≠ p(· | st, at)
.
.
.

¸1

+ dt, (3.9)

where dt≠1 = p(· | st≠1, at≠1)
1

wfik

Mk,t:H
≠wfik

M,t:H

2

≠
1

wfik

Mk,t:H
(st) ≠ wfik

M,t:H(st)
2

. So,

{dt}tØ1 is a martingale difference sequence, each term upper bounded by H. The

sum
q

tØ1 dt can be bounded using Azuma-Hoeffding’s inequality. Moreover, if

the unknown M belongs to the plausible set Mk, then
-
-
-rk ≠ r

-
-
- and

.

.

.pk ≠ p
.
.
.

¸1

can

be bounded by the confidence bonuses —k
r and —k

p . So, the regret of UCRL2 is

bounded.

For the sake of completeness, we recall the result of [JOA10] for the infinite horizon

setting below.

Proposition 3.5 ([JOA10, Theorem 2])

For any communicating MDP M with S states, A actions and diameter D, with

probability at least 1 ≠ ”, it holds that for any T > 1, the regret of UCRL2 is

bounded by

Regret(UCRL2, M, T ) Æ 34DS

Û

AT ln
1T

”

2

.

Compared to Proposition 3.4, the upper bound in Proposition 3.5 is loose by a factorÔ
DS ignoring the logarithmic term.

3.7.2 Upper confidence bound value iteration (UCBVI) [AOM17].

UCBVI is an optimistic algorithm designed for the finite horizon setting. The algo-

rithm keeps track of the empirical mean p̂ of p and only constructs confidence set Br

for r based on a high probability confidence bound. Differently from UCRL2, which

chooses only one copy of the expected reward, UCBVI executes Line 4 of Algorithm 1

by choosing H copies in the following manner:

• set wfik

H+1:H,Mk(s) = 0 for all s,

• for h from H to 1
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– choose rÕ(s, a) œ B
k
r (s, a) for all (s, a) such that for all s,

wfik

h:H,Mk(s) = min

Y

]

[
H, max

aœA

1

rÕ(s, a)+
ÿ

sÕœS

p̂k(sÕ | s, a)wfik

h+1:H,Mk(sÕ)
2

Z

^

\

(3.10)

– set fik
h(s) = ah where ah is one of the actions that achieve the maximum

of (3.10).

The confidence sets for reward are defined by: for all state-action pair (s, a) and all

time step 1 Æ h Æ H,

B
k
r (s, a) :=

Ó

u œ [0, H] :
-
-
-u ≠ r̂k(s, a)

-
-
- Æ —k

r (s, a)
Ô

where —k
r (s, a) = H

ˆ
ı
ı
ı
Ù

cr ln(SAtk)

2 max
1

1, Nk(s, a)
2 is the confidence bonus, and cr is a con-

stant to be chosen accordingly before the learning.

It is shown in [AOM17] that wfiú

M ≠ wfik

Mk Æ 0 holds with high probability. By

Equation (3.6), the regret of UCBVI is bounded by
q

k

q

s fl(s)[∆k
conc(s)] with high

probability. The theoretical novelty in UCBVI is to efficiently deal with the term

(p̂k ≠ p)wfik

Mk when rewriting the right term of (3.8). Indeed, (p̂k ≠ p)wfik

Mk is also

rewritten as (p̂k ≠p)(wfik

Mk ≠wfiú

M )+wfiú

M (p̂k ≠p). Since wfiú

M is deterministic, the term

wfiú

M (p̂k ≠ p) can be bounded using Chernoff-Hoeffding’s inequality on individual

component wfiú

M (sÕ)
1

p̂k(sÕ) ≠ p(sÕ)
2

. Moreover, thanks to the optimism, wfik

Mk(sÕ) ≠
wfiú

M (sÕ) is non-negative for any sÕ œ S with high probability. So, the empirical

Bernstein’s inequality can be used to upper bound each individual component
1

p̂k(sÕ)≠p(sÕ)
21

wfik

Mk(sÕ)≠wfiú

M (sÕ)
2

.

UCBVI enjoys the following worst-case regret guarantee.

Proposition 3.6 ([AOM17, Theorem 1])

In the finite horizon setting with horizon H, for any unknown MDP M with S

states and A actions, with probability at least 1 ≠ ”, it holds that the regret of

UCBVI is bounded by

Regret(UCBVI, M, K) Æ 20H3/2
Ô

SAKL + 250H2S2AL2

where L := ln
1

5SAKH2

”

2

.
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So, for T Ø HS3A and SA Ø H, this bound is of order Õ(H
Ô

SAT ) where T = KH

and Õ(·) hides the logarithmic terms. Compared to the lower bound Ω(
Ô

HSAT ),

the bound given in Proposition 3.6 is loose by a factor
Ô

H ignoring the logarithmic

terms. The advanced version UCBVI-BF, which enjoys a regret bound Õ(
Ô

HSAT ),

is also given in [AOM17].

3.7.3 Posterior sampling for reinforcement learning (PSRL)

[ORV13].

PSRL designed for the finite horizon setting is a posterior sampling algorithm which

starts by choosing prior distributions „r and „p, such that the unknown r is assumed

to be drawn according to „r, and the unknown p according to „p. To ease the

exposition, we will say that an MDP M Õ = ÈS, A, rÕ, pÕÍ is sampled according to

„ when rÕ is sampled according to „r and pÕ is sampled according to „p. When

updating its policy, PSRL uses the collected observations and Bayes’ theorem to

derive the posterior distribution of the unknown MDP. After that, an MDP is sampled

according to the posterior, and PSRL computes an optimal policy of the sampled

MDP. Precisely, at time step tk, PSRL uses the observations otk to update the posterior

„
!
· | otk

"
. Then, Line 4 of Algorithm 1 is performed by sampling an MDP Mk from

„
!
· | otk

"
and computing an optimal policy fik in Mk. The policy fik is then used

during the episode k to collect more observations.

The performance of PSRL is measured by the Bayesian regret given in (3.5). Broadly

speaking, we bound the Bayesian regret by bounding the regret with some determin-

istic terms, and the expected value of those terms are then themselves. To do so, we

will first show that the expected value of ∆
k
model defined in (3.6) is zero. Then, the

term ∆
k
conc is bounded in the same manner as UCRL2 does.

Lemma 3.7

For any k Ø 1, let tk be the time step that episode k starts and otk be the

observations collected right before tk. Assume that the unknown MDP M is

drawn according to the prior „ and that Mk is sampled according to the posterior

„
!
· | otk

"
. Then, for any otk -measurable function f , one has

E[f(M)] = E[f(Mk)]. (3.11)
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Proof. At the start of each episode k, M and Mk are identically distributed condi-

tioned on otk . In consequence, if f is otk -measurable function, one has:

E[f(M) | otk ] = E[f(Mk) | otk ].

Equation (3.11) then follows from the tower rule.

This lemma implies that E
Ë

wfik

Mk

È

= E

Ë

wfiú

M

È

because Mk and fik are otk -measurable.

Consequently, E
Ë

∆
k
model

È

= 0 for PSRL. The term ∆
k
conc can be rewritten as in (3.9).

Since dt is a martingale difference term, its expected value is zero. The term
-
-
-rk ≠ r

-
-
-

and
.
.
.pk ≠ p

.

.

.
¸1

can be bounded using Hoeffding’s and Weissman’s inequalities.

PSRL enjoys the following Bayesian regret guarantee.

Proposition 3.8 ([ORV13, Theorem 1])

In the finite horizon setting with horizon H, if „ is the prior distribution of the

unknown MDP M with S states and A actions, then

BayesRegret(PSRL, „, T ) = O

A

HS

Ú

AT ln
1

SAT
2

B

, (3.12)

where T = KH.

So, this bound is of order Õ(HS
Ô

AT ), where T = KH, and Õ(·) hides the logarith-

mic terms. It is loose by a factor
Ô

HS compared to the lower bound Ω(
Ô

HSAT ).

Note that this bound is for Bayesian regret which means that it is a weaker guarantee

compared to the regret bound with high probability of UCRL2 and UCBVI.
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Markovian Bandit Problem 4
A multi-armed bandit problem is a sequential decision problem in which, at each

time step, the decision maker chooses one among a set of available actions and

obtains some incentive. The decision maker’s goal is to maximize the total incentive

by a sequence of actions. Fundamentally, there are at least three types of bandit

problems depending on the nature of the incentive: stochastic, adversarial, and

Markovian. In this thesis, we focus on Markovian bandits. We refer to [BC12] for

more detailed discussion about stochastic and adversarial bandits.

In this chapter, we recall the existing formalizations of Markovian bandit in Sec-

tion 4.1. Then, we present the rested Markovian bandit problem in Section 4.2.

In discounted rested bandit problem, it is well-known that Gittins index policy is

optimal. So, we recall its definition in Section 4.2.2. Next, we present the restless

Markovian bandit problem in Section 4.3. For infinite horizon setting, there are two

possible criteria for restless bandits depending on whether the reward is discounted

or not. For both criteria, Whittle index policy is a popular heuristic thanks to its sim-

plicity and strong empirical performance. So, we recall its definition in Section 4.3.2.

Finally, in Section 4.4, we point out the questions that arise in the rested and restless

bandit problems, and that will be treated in Part II. We also outline the questions

arisen when learning with the rested and restless bandit model. These questions will

be treated in Part III.

4.1 A brief summary of Markovian bandit formalizations

Markovian bandits form a subclass of multi-armed bandit problems in which each

arm has an internal state that evolves in a Markovian manner, as a function of the

decision maker’s actions.

In rested Markovian bandit, each arm is modeled by a finite Markov reward process.

At each time step, the decision maker observes the current state of each arm and

activates one arm. The activated arm incurs a random reward and transitions to a

new state in a Markovian fashion. Meanwhile, the unchosen arms remain in the

same state. The name “rested” is adopted because the unchosen arms make no
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state transitions and incur no rewards. Rested bandit is also known as restful bandit

or a family of alternative bandit processes (see e.g., [Git79; KV87; Duf95; TL10;

GGW11]).

In [Whi88], Whittle extended the rested Markovian bandit to a restless case in which

the unchosen arms also make a state transition and incur some reward (possibly

always zero). Up to the current literature, two setups are made for restless bandits:

(1) partially observed setup and (2) fully observed setup.

For partially observed restless bandits, each arm is a finite Markov reward process.

At each time step, the decision maker activates one arm and observes its current

state. The chosen arm incurs a random reward in a function of its current state. After

that, all arms make a state transition. The decision maker only observes the current

state of the activated arm. That is why the term “partially observed” is used. This

setting is considered, for example, in [AL09; Ort+12; JT19; AM19a; WHL20].

For fully observed restless bandits, each arm is a finite MDP with binary action space.

At each time step, the decision maker observes the current state of all arms and

activates multiple arms. The activated arms incur random rewards and change state

according to their active Markov reward process. The unchosen arms also incur

random reward (possibly always zero) and change state according to their passive

Markov reward process. This model is considered, for example, in [Whi96; AM19b;

GGY20; Dah+22].

Lastly, an even more general model of the fully observed restless bandit is the case

where each arm is a finite MDP with multiple actions. At each time step, the decision

maker has to decide which action to be executed on each arm without violating

the resource constraint. This kind of model is known in the literature as a restless

multi-armed multi-action bandit (see e.g., [HG15; KPT21]).

Markovian bandit models in this thesis

We consider only rested and the fully observed restless Markovian bandits. For

fully observed restless bandits, we consider the setup with binary action space

and will simply call it “restless bandit”. For both bandits, we consider the infinite

horizon setting: the decision maker collects rewards over an infinite number of time

steps.
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4.2 Rested Markovian bandit

4.2.1 Notations and problem formulation

A rested Markovian bandit is a multi-armed bandit having n œ N
+ arms. Each arm

ÈSi, ri,PiÍ for i œ [n] is a Markov reward process with a finite state space Si of size

Si, a mean reward vector ri œ [0, 1]Si and a stochastic matrix Pi. In state si œ Si,

the arm i incurs a random reward with the expected value ri(si) and transitions to a

new state sÕ
i with a probability Pi(si, sÕ

i).

The sequential decision problem is the following. At time step 1, the state of all arms

denoted by s1 := (s1,1, . . . , s1,n) is sampled according to some initial distribution

fl over the state space X := S1 ◊ · · · ◊ Sn. At time step t Ø 1, the decision maker

observes the current state of all arms denoted by st := (st,1, . . . , st,n) and activates

one arm i œ [n]. The activated arm incurs a random reward discounted like “t≠1rt

where “ œ (0, 1] is a discount factor. After that, the activated arm transitions to a

new state. The other arms incur no rewards and make no state transitions. The

decision maker acts using a policy fi : X ‘æ [n].

In rested bandit with no discount, “ = 1, the decision maker wants to find an

optimal policy that maximizes the average reward of any initial state. This setting

is well treated in the literature [AVW87; TL10]. With the assumption that each

arm is ergodic, an optimal policy is immediately derived: let µi œ ∆
Si be the state

distribution of arm i in its steady regime. It is optimal to always activate arm iú

where iú œ arg maxiœ[n]

q

siœSi
ri(si)µi(si) [TL10].

In rested bandit with discount, “ œ (0, 1), the decision maker wants to find an

optimal policy fiú that maximizes the expected cumulative discounted reward of any

initial state. This is an infinite horizon discounted problem, presented in Section 2.3,

in which the rested Markovian bandit is a structured MDP. We discuss more about

this setting in the following section.

4.2.2 Discounted rested bandit: Gittins index policy

Since a rested bandit can be viewed as an MDP, it is then possible to find an optimal

policy using iterative algorithms such as value iteration. However, those algorithms

have a computational complexity that is polynomial in the MDP state size, thus,

exponential in the number of arms. This makes them prohibitive for rested bandits

with a large number of arms. So, efficiently computing an optimal policy fiú in
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rested bandits with discount was an open problem from the 1940s to 1970s [Whi96].

However, [Git79] had solved the problem in about 1970 by proposing an index

policy.

Proposition 4.1 ([Whi96, Theorem 14.3.3])

In any rested Markovian bandit with a discount factor “ œ (0, 1) and n œ
N

+ arms, each with state space Si for i œ [n], there exists an index function

that associates each state si œ Si of each arm i œ [n] with a real number

GittinsIndex(si) where

GittinsIndex(si) := sup
·>0

E
#q·

t=1 “t≠1rt | s1,i = si
$

E [
q·

t=1 “t≠1 | s1,i = si]
, (4.1)

and {rt}1ÆtÆ· is the sequence of rewards incurred uniquely by arm i when it

makes state transitions over time steps 1 to · , where · is the stopping time.

The policy fi : S1 ◊ · · · ◊ Sn ‘æ [n] where for all s œ X

fi(s) œ arg max
iœ[n]

GittinsIndex(si)

is optimal.

The index of state si is now called Gittins index, and the policy in Proposition 4.1

is called Gittins index policy. Gittins index policy from [Git79] is a breakthrough

because the index value of state si œ Si given in (4.1) depends only on the local

parameters {ri,Pi} of arm i. Thus, the computational complexity of Gittins index

policy is linear in the number of arms, and solving discounted rested bandit problem

is broken down into computing Gittins index of each state of each arm.

Note that Gittins index policy is optimal when exactly one arm is activated at each

time step. This index policy is suboptimal when the decision maker activates more

than one arm at each time step or when the decision maker interact with the bandit

over a finite horizon [GGW11].

4.3 Restless Markovian bandit

4.3.1 Notations and problem formulation

A restless Markovian bandit is a multi-armed bandit having n arms. Each arm

ÈSi, {0, 1}, {r0
i , r1

i }, {P 0
i ,P 1

i }Í is an MDP with a finite state space Si of size Si and
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a binary action space {0, 1}, where 0 denotes the action “rest” and 1 denotes the

action “activate”. If arm i is in state si and the decision maker executes ai œ {0, 1},

the arm incurs a random reward with the expected value rai
i (si) and transitions to a

new state sÕ
i œ Si with a probability P ai

i (si, sÕ
i).

The sequential decision problem is presented as the following. At time step 1, the

state of all arms denoted by s1 := (s1,1, . . . , s1,n) is sampled according to some

initial distribution fl over the state space X := S1 ◊ · · · ◊ Sn. At time step t Ø 1, the

decision maker observes the current state of all arms denoted by st := (st,1, . . . , st,n)

and activates exactly m arms encoded by action at := (at,1, . . . , at,n), such that

at œ {0, 1}n and
qn

i=1 at,i = m, where m œ [n] is constant over time. Each arm i

incurs then a random reward discounted like “t≠1rt,i, where “ œ (0, 1] is a discount

factor, and makes a transition to a new state st+1,i in function of st,i and at,i but

independently of the other arms.

Similarly to rested case, the restless Markovian bandits are a specific MDP – that

we denote by M – whose state space is X , and action space is A(m) := {a œ
{0, 1}n :

qn
i=1 ai = m}. We say that M is the global MDP. There are two possible

criteria. In discounted restless bandit, the decision maker wants to find an optimal

policy fiú that maximizes the expected cumulative discounted reward of any initial

state (see e.g., [Niñ07b; Fu+19; AM20; Niñ20]). In undiscounted case “ = 1, the

maximization criterion is the long-run average reward (see e.g., [Whi88; Whi96;

PT94; GJN21; AB22]). As mentioned in Section 2.4, the average reward criterion

is a generalization of discounted criterion (see Equation (2.10)). So, we will only

discuss the average reward criterion here.

In restless bandit with average reward criterion, the average reward or gain of policy

fi is defined by: for any s œ X ,

lim
T æ+Œ

1

T
E

fi

C
Tÿ

t=1

nÿ

i=1

rt,i | s1 = s

D

. (4.2)

As presented in Chapter 2, if the MDP M has a finite state and action spaces, then

an optimal policy fiú that maximizes (4.2) for any s œ X exists and is deterministic.

However, due to the curse of dimensionality, computing such an optimal policy is

notoriously difficult as its complexity grows exponentially with the number of arms.

In fact, it is shown in [PT94, Theorem 4] that computing an optimal policy in the

restless bandit with average reward criterion is PSPACE-hard. In about 1980, Peter

Whittle proposed a heuristic in the form of the largest index rule, later known as

Whittle index policy, for restless bandit problem with average reward criterion. The

computational complexity of this heuristic is linear in the number of arms making
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it scalable for problems with a large number of arms. We discuss this index policy

more in the following section.

4.3.2 Restless bandit with average reward criterion: Whittle index

policy

In his seminal paper [Whi88], Peter Whittle proposes the following heuristic: if all

arms verify a technical condition known as indexability, then each state si of each arm

i is associated with a real number ⁄(si), which is now known as the Whittle index of

state si. At each time step, the decision maker activates m arms whose Whittle index

of their current state are the m greatest indices. This heuristic performs extremely

well in practice, see e.g., [GM02; Ans+03; GRK06]. In fact, Whittle index policy has

been shown to be asymptotically optimal as the number of arms grows to infinity

under certain technical assumptions [WW90; LT00; Ver16].

Following Whittle’s development [Whi88], the hard constraint “for any time t Ø 1,
qn

i=1 at,i = m” is relaxed to

lim
T æ+Œ

1

T
E

fi

C
Tÿ

t=1

nÿ

i=1

at,i | s1 = s

D

= m.

The Lagrangian relaxation of maximizing (4.2) under the hard constraint is then

written:

lim
T æ+Œ

1

T
E

fi

C
nÿ

i=1

Tÿ

t=1

(rt,i ≠ ⁄at,i) | s1 = s

D

+ ⁄m, (4.3)

where ⁄ is a Lagrangian multiplier associated to the constraint. Finding a policy fi

that maximizes (4.3) can be done by working on n independent local problems: for

arm i, the optimal actions for state si must satisfy the Bellman optimality equation

gú(si) + hú(si) = max
aiœ{0,1}

1

rai
i (si) ≠ ai⁄ +

ÿ

sÕ

iœSi

P ai
i (si, sÕ

i)h
ú(sÕ

i)
2

(4.4)

where gú(si) and hú(si) are the optimal gain and bias of state si of arm i respectively

(see Section 2.4 for their formal definitions). In economical perspective, the term ⁄

can be viewed as a “tax for activation”, adjusted to ensure that m arms are activated

on average. A negative tax would be viewed as a “subsidy”. We will use the term

“penalty” in the sense of tax. From [Whi88; Whi96], if arm i is indexable, then the
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Whittle index of state si is the critical value ⁄(si) where action rest and activate are

equivalent in (4.4):

r0
i (si) +

ÿ

sÕ

iœSi

P 0
i (si, sÕ

i)h
ú(sÕ

i) = r1
i (si) ≠ ⁄(si) +

ÿ

sÕ

iœSi

P 1
i (si, sÕ

i)h
ú(sÕ

i). (4.5)

So, the index is meaningful: the higher the tax needed to induce one to rest an arm,

the more rewarding must it be to activate that arm.

Note that Whittle index can be defined for both discounted (“ < 1) or average

reward (“ = 1) criteria. However, Whittle index policy is suboptimal in general.

Precisely, under certain technical assumptions, Whittle index policy is asymptotically

optimal for the restless bandit with average reward criterion as the number of arms

grows to infinity [WW90].

Finally, there are efforts dedicated to studying asymptotically optimal policies in

the finite-horizon setting. For example, [HF17; BS20; ZF21; GGY22a] use the

relaxed version of the problem that shares some features in Whittle’s relaxation,

but that is adapted to the finite-horizon criteria. To the best of our knowledge,

there is no generic method that achieves the optimality in finite-horizon Markovian

bandits, neither in the rested nor in the restless case. For instance, there exists a

definition of Gittins index for finite-horizon rested problems, but they are known to

be suboptimal.

4.4 Questions studied in this thesis

4.4.1 Indexability

In discounted rested bandit, Gittins index is well-defined [CM14]. This means that

all arms are indexable in the rested bandits with discount. However, the definition

of indexability in the restless bandits would seem unsettled: In [Whi96, Chapter 14],

the restless bandit with average reward criterion is considered. An arm is said to

be indexable if the set of states for which the arm is rested increases from empty

set to the set of all states as ⁄ increases [Whi96, Page 280]. Yet, the optimality

criterion to rest an arm is not explicitly specified: is the arm rested simply if the gain

is maximized? This question is important because from [Put14], there are multiple

optimality criteria in the average reward model. In addition, what could we say in

the case where there are multiple sets of states that increase from empty set to the

set of all states as ⁄ increases? Lastly, if arm i is indexable, then the Whittle index of
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state si can be computed by (4.5). As we mentioned in Section 2.4, vector hú œ R
Si

that satisfies Bellman optimality equation with the optimal gain gú is not uniquely

determined in general. So, in an indexable arm, some states can have multiple index

values?

These essential questions will be treated in Chapter 5 of Part II.

4.4.2 Index computation

Several numerical methods to compute Gittins index are presented in [CM14]

such as state elimination [Son08] and fast-pivoting [Niñ07a] algorithms. Given an

arm with S states, the current best methods compute Gittins index of all states in

(2/3)S3 + O(S2) arithmetic operations1 [CM14]. In [Niñ20, Page 4], the author

claims that it is unlikely that the complexity (2/3)S3 + O(S2) can be improved.

For discounted restless bandits, fast-pivoting algorithm of [Niñ20] is the current best

method to compute Whittle index. For an arm with S states, the algorithm performs

(2/3)S3 + O(S2) arithmetic operations if the initialization phase is excluded from

the count. This is done by using the parametric simplex method and exploiting the

special structure of this linear system to reduce the complexity of simplex pivoting

steps. This fast-pivoting algorithm is an efficient implementation of adaptive-greedy

algorithm [Niñ07b], which outputs Whittle index if and only if the arm satisfies a

technical condition called partial conservation law (PCL), which is more restrictive

than just being indexable. The work of [AM20] proposes another implementation of

adaptive-greedy algorithm that computes Whittle index for general indexable arm

and not just restricted to PCL-indexable. However, the implementation performs in

O(S3) and the constant in O(·) for S3 is not specified. To the best of our knowledge,

there are very few efficient general-purpose algorithms to test indexability in both

discounted and average-reward restless bandits. For instance, [Niñ10] is the only

work that proposes an efficient explicit algorithm to test indexability for discounted

restless bandits. There is no explicit algorithm for computing Whittle index in

average-reward restless bandits.

In summary, there are a few essential questions:

• Is it possible to improve the complexity of computing Gittins index?

• Is testing indexability computationally hard?

1multiplications and additions of real numbers, regardless of their values
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• Is there an efficient and unified algorithm to compute Whittle index in dis-

counted and average-reward restless bandits?

• Is Whittle index harder to compute than Gittins index?

These questions will be answered in Chapter 6 of Part II.

4.4.3 Learning in rested Markovian bandit

Thanks to Gittins index policy, the discounted rested Markovian bandit is an MDP

that escapes from the curse of dimensionality in terms of computational complexity.

Precisely, although the state size of the rested Markovian bandit is exponential in

the number of arms n, Gittins index policy is an optimal policy that demands a

computation linearly in n. It is then interesting to understand how the curse of

dimensionality manifests in RL problems in which the environment is an unknown

rested Markovian bandit. By Tables 3.1 and 3.2, directly apply existing RL algorithms

to such RL problems incurs a regret that is exponential in n. However, if the n arms

all have S states, there are only nS real values to be estimated for the expected

reward and nS2 for the state transition probability. So, the minimax regret bound

should be smaller for rested Markovian bandit. This raises the following questions.

• What is the minimax regret bound for RL algorithms in the rested Markovian

bandits with discount?

• Gittins index policy has a very appealing computational complexity. Can the

OFU and Bayesian methods leverage this index policy to escape from the curse

of dimensionality?

These questions are discussed in Chapter 7 of Part III.

4.4.4 Learning in restless Markovian bandit

Similarly to rested bandits, in restless bandits with n arms and S states per arm,

there are only 2nS real values to be estimated for the expected reward and 2nS2 for

the transition probability. It is then equally interesting to analyze the performance of

RL algorithms when the environment is an unknown restless bandit with no discount.

However, in the infinite horizon average reward model, the structure of the MDP

must be taken into account in the learning. That is, from Table 3.2, one needs to

assume some structures of the bandit. Yet, the size of the state space X is exponential

in the number of arms n. So, testing the bandit’s structure is computationally hard,
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and it is preferable to find arm’s structures that imply desirable bandit’s structures.

In consequence, we are interested in the following questions.

• How do the arms’ structure translate into the bandit’s structure?

• Is there any RL algorithms whose regret is bounded linearly in n in learning

the general class of restless Markovian bandits with average reward criterion?

• Although Whittle index policy has a computational complexity linear in n, this

index policy is not defined when the restless bandit is not indexable. Worse

yet, it is suboptimal in general. So, how can Whittle index policy be utilized

for learning purpose?

These questions will be addressed in Chapter 8 of Part III.
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Part II

Indexability and Index Computation





Indexability and Bellman

optimality

5

In the previous chapter, we gave the formalism of Markovian bandits and recalled

two index policies: Gittins and Whittle index policies. In this chapter, we discuss

the existence of the Whittle index in restless Markovian arm with average reward

criterion and provide a few main contributions to characterize such an existence.

This work is part of our article published in Mathematical Methods of Operations

Research (MMOR) journal [GGK23].

We present our main contributions in Section 5.1. Then, the notations and ⁄-

penalized MDP that is the basis for defining the indexability are described in Sec-

tion 5.2. After that, we cover the ambiguities in the classical definition of indexability

accompanied by simple examples in Section 5.3. These ambiguities inspire us to

introduce a new notion of Bellman optimality for MDPs with the average reward

criterion in Section 5.4. Based on this notion, we introduce our definitions of in-

dexability and Whittle index in Section 5.5. Next, we extend the discussion about

indexability in Section 5.6. Section 5.7 contains the properties of Bellman optimal

policies. Finally, we conclude the chapter in Section 5.8.

5.1 Contributions

In this chapter, we discuss the definition of indexability and present two main

contributions.

Our first contribution is to propose a univocal definition of indexability. This defini-

tion clarifies the ambiguities in the classical definitions: Classical definitions assume

that an arm is indexable if the optimal set of active states is a non-increasing function

of some penalty term ⁄. While this definition works for most practical cases, it is

not always precise enough because the optimal set is not unique in general. In

our definition, we specify the notion of increasingness that should be used. Our

definition guarantees the uniqueness of Whittle index when it exists.
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Lastly, we introduce a new notion of Bellman optimality for the MDPs with average

reward criterion. This notion is more restrictive than the classical gain optimality, but

it is rich enough to allow us to redefine the indexability in restless Markovian bandits

with average reward criterion. We also study the characterization of gain optimal

and Bellman optimal policies. In particular, we provide a checkable condition for

the uniqueness of a given Bellman optimal policy. This condition is useful for index

computation in the chapter that follows. This is a new contribution to the vast

literature of MDP and Markovian bandit.

5.2 Notations and problem formulation

Since index policies require computation on each arm individually, we will focus only

on a single arm. Also, this chapter and the next chapter concern the computational

complexity. So, we redefine some notations in the previous chapter. These redefined

notations are used uniquely for Part II.

5.2.1 Restless bandit arm

An n-state restless bandit arm is a Markov decision process (MDP) with a discrete

state space [n] := {1, . . . , n} and a binary action space {0, 1}, where 0 denotes the

action “rest”, and 1 denotes the action “activate”. The time is discrete, and the

evolution is Markovian: If the MDP is in state i, and action a is chosen, the MDP

incurs an instantaneous reward ra
i and transitions to a new state j with probability

P a
ij . We denote this MDP by È[n], {0, 1}, {r0, r1}, {P 0,P 1}Í.

5.2.2 λ-penalized MDP and policy structure

We consider a single arm È[n], {0, 1}, {r0, r1}, {P 0,P 1}Í. Following the Lagrangian

relaxation in the previous chapter, we define a ⁄-penalized MDP1 for each ⁄ œ R as

the following. The state and action spaces, and transition of this MDP are the same

as the ones of the arm. The instantaneous reward for action a when the arm is in

state i is ra
i ≠ ⁄a. We recall from Chapter 4 that the quantity ⁄ is a penalty for taking

action “activate”.

1not to be confused with γ-discounted MDPs, where the discount is on rewards and not on actions.
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Since there are only two actions, a policy fi is a subset of the state space, fi ™ [n],

such that the policy chooses to activate the arm in state i if i œ fi. We say that fi is a

set of active states, and state i is passive if i ”œ fi. By abuse of notation, we will write

fii = 1 if i œ fi, and fii = 0 if i ”œ fi. The sequential decision problem is the average

reward criterion in the ⁄-penalized MDP. For a given ⁄, we denote fiú(⁄) an optimal

policy for the penalty ⁄.

5.3 Discussion on the classical definition of indexability

The classical definition of indexability used in the literature [AM20; GJN21; Nak+21]

says that an arm is indexable if and only if the optimal policy fiú(⁄) is non-increasing

in ⁄ (for the inclusion order). If an arm is indexable, these papers define the Whittle

index of a state i as a real number ⁄i such that fiú(⁄) = {i œ [n] : ⁄i > ⁄}. Yet, we

argue that this definition has two problems:

1. What does “increasing” mean when fiú(⁄) is not unique? Two possibilities are:

for all penalties ⁄ < ⁄Õ:

(÷) there exist policies fi, fiÕ with fi optimal for ⁄ and fiÕ optimal for ⁄Õ such

that fi ´ fiÕ;

(’) for all policies fi, fiÕ such that fi is optimal for ⁄ and fiÕ is optimal for ⁄Õ,

we have fi ´ fiÕ.

2. What notion of “optimality” should be used? Should it be “gain optimal”, “bias

optimal” or another notion of optimality?

The most problematic choice is the notion of increasingness that applies to both

discounted and average reward criteria: Interpretation (÷) is more permissive: For

instance, consider an arm with two states, and assume that the optimal policy is

{1, 2} for ⁄ < 0, and either {1} or ÿ for ⁄ > 0. Interpretation (÷) says that the arm

is indexable while interpretation (’) says that this arm is not indexable. If the arm

is indexable, what should be the index of state 1? Any choice of ⁄1 œ [0, +Œ] seems

reasonable. Saying that the arm is not indexable clarifies the situation. So, we will

choose the interpretation (’) in our new definition of indexability in Section 5.5.

The choice of optimality is due to the average reward criterion. To show it, let us

consider the example in Figure 5.1. In this example, the gain optimal policies are

{1, 2} and {2} for ⁄ < 0, and {1} and ÿ for ⁄ > 0. According to the interpretation (÷),

the problem is indexable, but the index for state 1 is unclear. According to the
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interpretation (’), the problem is not be indexable. Yet, it is reasonable that this

example is indexable, and the index of state 1 and 2 is ⁄1 = ⁄2 = 0. We argue that it

is not the interpretation (’) to blame for the non-indexability of this example but

the optimality criterion. That is, for ⁄ < 0, the policy {2} is gain optimal, but it rests

the arm in state 1 and gets a reward of 1 while it is “better” to activate the arm in

state 1 and get a reward of 1 ≠ ⁄. The policy {2} is gain optimal because state 1

is a transient state, and state 2 is the recurrent state. So, “acting optimally” in the

recurrent states “leads to” gain optimality (we will discuss this in Section 5.7.2).

The same discussion goes for policy {1} when ⁄ > 0. This inspires us to introduce a

new notion of optimality for policy {1, 2} when ⁄ < 0, and policy ÿ when ⁄ > 0.
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1≠⁄

+1

The gain optimal policies are {1, 2} and {2} for ⁄ < 0, and
{1} and ÿ for ⁄ > 0. When ⁄ < 0, policy {2} is gain optimal
but acts suboptimal in state 1. When ⁄ > 0, policy {1} is
gain optimal but acts suboptimal in state 1.

Figure 5.1.: Example in which the classical definition of indexability is ambiguous: All
transitions are deterministic, and all labels on transitions indicate rewards.
Solid black arrows correspond to the action “activate”, and dashed red arrows
to the action “rest”.

5.4 Definition of Bellman optimality

Given a policy fi, we denote by gfi
i the gain of state i when following policy fi in

⁄-penalized MDP. Let gú
i = maxfi gfi

i be the maximal gain starting from state i. As

mentioned in Section 2.4.3, the optimal gain gú is uniquely defined. We recall from

Section 2.4.3 that a policy fi is gain optimal if gfi
i = gú

i for all state i. Also, the vector

gú is the optimal gain if and only if there exists a vector hú, called optimal bias vector

that satisfies the Bellman optimality equations: for all i œ [n],

gú
i = max

aœ{0,1}

1 nÿ

j=1

P a
ijgú

j

2

gú
i + hú

i = max
aœ{0,1}

1

ra
i ≠ ⁄ai +

nÿ

j=1

P a
ijhú

j

2

. (5.1)

We define a new notion of optimality as the following.

50 Chapter 5 Indexability and Bellman optimality



Definition 5.1 (Bellman optimal policy)

A policy fi is Bellman optimal if there exists a vector hú œ R
n satisfying Bellman

optimality equation (5.1) with the optimal gain gú such that, for all state i œ [n],

nÿ

j=1

P fii
ij gú

j = gú
i and fii œ arg max

aœ{0,1}

1

ra
i ≠ ⁄ai +

nÿ

j=1

P a
ijhú

j

2

. (5.2)

By [Put14, Theorem 9.1.7], Bellman optimal policy always exists in MDPs with finite

state and action spaces, and Bellman optimality implies gain optimality. However,

we will see in Section 5.7.2 that the converse is not true in general. So, the notion

of Bellman optimality is more restrictive than the notion of gain optimality.

With this definition, in Figure 5.1, policy {2} is not Bellman optimal for ⁄ < 0,

and policy {1} is not Bellman optimal for ⁄ > 0. The Bellman optimality is very

natural, and we say that it is new because, to the best of our knowledge, the

definition is never introduced in the literature of average reward MDPs. Note that

the distinction between gain optimality and Bellman optimality disappears in infinite

horizon discounted problems or in ergodic MDPs with average reward criterion.

Also, Bellman optimality is equivalent to canonical optimality of finite horizon MDPs

(see e.g. [GSZ00]).

In general MDPs, a Bellman optimal policy can be obtained using Multichain Policy

Iteration algorithm. We refer to [Put14, Section 9.2.1] for more detail about this

algorithm.

We stay focused on the indexability of restless Markovian arm in this chapter’s

progression and will discuss the Bellman optimality more at the end of the chapter.

5.5 Our unambiguous definition of indexability

To solve the two ambiguities in the classical definition of indexability, we use the

following definition.

Definition 5.2 (Indexability)

Given a finite-state arm, let Π
ú(⁄) be the set of all Bellman optimal policies for

a penalty ⁄. We say that the arm is indexable if for all ⁄ < ⁄Õ, and all policies

fi œ Π
ú(⁄) and fiÕ œ Π

ú(⁄Õ), fi ´ fiÕ.
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This definition says that the function fiú(⁄) ´ fiú(⁄Õ) regardless of the choice of

Bellman optimal policies. With this definition, the example in Figure 5.1 is indexable.

Indeed, for ⁄ < 0, {1, 2} is the only Bellman optimal policy, and for ⁄ > 0, ÿ is the

only Bellman optimal policy.

As we show next, Definition 5.2 guarantees that Whittle index is uniquely defined

when it exists.

Lemma 5.3 (Definition of the Whittle index)

In an n-state arm, the two following properties are equivalent:

(i) The arm is indexable.

(ii) For all state i œ [n], there exists a unique penalty ⁄i – called the Whittle

index of state i – such that if fi œ Π
ú(⁄) is any Bellman optimal policy for

the penalty ⁄, then fii = 1 if ⁄ < ⁄i, and fii = 0 if ⁄ > ⁄i.

With this lemma, the indices in Figure 5.1 are ⁄1 = ⁄2 = 0. We should stress that, by

Lemma 5.3, the Whittle index ⁄i can either be finite or infinite. When we say that “a

policy fi is optimal for the penalty +Œ”, this means “there exists a penalty ⁄̄ such

that fi is optimal for all ⁄ Ø ⁄̄”. Similarly, when we say that “a policy fi is optimal

for the penalty ≠Œ”, this means “there exists a penalty ⁄ such that fi is optimal for

all ⁄ Æ ⁄”.

Proof. The lemma is a direct consequence of the definition of indexability.

(i) ∆ (ii) – Assume first that the arm is indexable. Let i œ [n] be a state, and let

⁄i = sup{⁄ : ÷fi œ Π
ú(⁄) such that fii = 0}. By Definition 5.2, if fiÕ is a Bellman

optimal policy for a penalty ⁄ > ⁄i, then fiÕ ™ fi, which in turn implies that fiÕ
i = 0.

Similarly, if ⁄ < ⁄i, then fiÕ
i = 1. This implies (ii).

(ii) ∆ (i) – Assume (ii), and let ‡k be the state with the kth smallest index (where

ties are broken arbitrarily) for 1 Æ k Æ n. Let ⁄‡k be the index of the state ‡k, and

let ⁄ œ (⁄‡k≠1 , ⁄‡k). By (ii), any Bellman optimal policy for the penalty ⁄ < ⁄‡k≠1

contains fik := [n] \ {‡1, . . . , ‡k≠1}. Similarly, fik contains any Bellman optimal

policy for the penalty ⁄ > ⁄‡k≠1 . So, the condition in Definition 5.2 is satisfied.
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5.6 More definitions of indexability?

In our new definition of indexability, we clarify the notion of increasingness by using

the interpretation ’. By doing so, we already solve the ambiguity in the indexability

of discounted restless bandits. Meanwhile, the last remaining ambiguity is due to

the average reward setting. We solve this by using the notion of Bellman optimality

because we believe that this notion is the most natural one. This allows the example

of Figure 5.1 to be indexable. However, we must recognize that this new definition

still does not cover all the problem of indexability in restless bandits with average

reward criterion. Indeed, let us consider the two examples in Figure 5.2.
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(a) (b)

Figure 5.2.: Examples that are non-indexable when using Bellman optimality but indexable
when using a stronger notion of optimality: All transitions are deterministic,
and all labels on transitions indicate rewards. Solid black arrows correspond
to the action “activate”, and dashed red arrows to the action “rest”.

For example (a), the Bellman optimal and gain optimal policies are identical: policy

{1, 2} for ⁄ < 0, and {1} and ÿ for ⁄ > 0. Hence, example (a) is not indexable

according to Definition 5.2. However, the intuition would suggest that the index

for this problem should be ⁄1 = ⁄2 = 0. This is what would have happened if

we had used the notion of bias optimality, which is stronger than the notion of

Bellman optimality. Yet, this would not solve the ambiguity of example (b), for

which the index of state 1 is not clear unless one would use an even stronger notion

of optimality (such as the notion of Blackwell optimality discussed in [Put14, Chap-

ter 10]). In this thesis, we do not use these stronger definitions because computing

a Blackwell-optimal policy in a n-state MDP is, to the best of our knowledge, not

computable in O(n3) (the complexity of computing Blackwell-optimal policies is

unknown to this date). Hence, in this thesis, we use the notion of Bellman optimality

that we believe to be the best trade-off between expressiveness and computability.

We discuss the Bellman optimality more in the following section.
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5.7 Properties of Bellman optimal policies

In Section 5.4, we introduce the notion of Bellman optimality in ⁄-penalized MDP.

However, this notion can be defined in any MDPs. In this section, we discuss the

properties of Bellman optimality and the difference between this optimality and the

gain optimality. To ease the exposition, we consider a fixed penalty ⁄ = 0 so that we

can drop ⁄ from the notation. Thus, all the technical lemmas in this section apply to

general MDPs.

5.7.1 Advantage function and characterization of Bellman optimality

Let g and h be a solution of Bellman evaluation equations (2.12) and (2.13) for

policy fi. We define the (dis-)advantage of action2 a in state i over policy fi by

Ba
i (g,h) := ra

i +
ÿ

jœ[n]

P a
ijhj ≠ gi ≠ hi. (5.3)

If fi is unichain, then h is determined up to a constant vector, and Ba
i (g,h) is then

uniquely defined for any state i œ [n], a œ {0, 1}, and (g,h) that satisfies (2.12) and

(2.13).

For (gú,hú) a solution of Bellman optimality equations (2.14) and (2.15), an optimal

action a for state i satisfies both
q

jœ[n] P a
ijgú

j = gú
i and Ba

i (gú,hú) = 0 [Put14;

SF78].

Lemma 5.4 (Bellman optimality characterization)

Consider a policy fi : [n] ‘æ {0, 1}. The three following properties are equivalent.

(i) fi is Bellman optimal.

(ii) There exists a vector hú œ R
n satisfying Bellman optimality equation (2.15)

with gú such that
q

jœ[n] P fii
ij gú

j = gú
i and Bfii

i (gú,hú) = 0 for all states

i œ [n].

(iii) There exists a vector h œ R
n satisfying Bellman evaluation equation (2.13)

for fi with gú such that, for all state i œ [n],
q

jœ[n] P fii
ij gú

j = gú
i and

Ba
i (gú,h) Æ 0 for all action a œ {0, 1}.

Proof. (i) … (ii) is a direct consequence of Definition 5.1 and (5.3).

2Note that it is also a function of h.
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(iii) ∆ (ii): By definition of advantage function, Ba
i (gú,h) Æ 0 for all action

a œ {0, 1} and all state i œ [n] if and only if h satisfies the optimality equation

(2.15). Moreover, if h satisfies the evaluation equation (2.13) for fi with gú, then

Bfii
i (gú,h) = 0 for all state i œ [n].

(i) ∆ (iii) is a direct consequence of Definition 5.1 and (2.13).

5.7.2 Difference between gain and Bellman optimalities

The immediate difference between both optimalities is that the Bellman optimality

is more restrictive than the gain optimality. Indeed, Lemma 5.4 shows that a policy

is Bellman optimal if and only if it achieves the maximum of the optimality equation

(2.15) on all states for some hú. On the other hand, the following lemma shows

that a policy is gain optimal if and only if it achieves the maximum of (2.15) on its

recurrent states for any hú.

Lemma 5.5 (Gain optimality characterization)

Let fi : [n] ‘æ {0, 1} be a policy, and Φ
fi be the set of recurrent states under policy

fi. The three properties below are equivalent.

(i) For all state i,
q

jœ[n] P fii
ij gú

j = gú
i and for all hú œ R

n satisfying Bellman

optimality equation (2.15) with gú, Bfii
i (gú,hú) = 0 for all i œ Φ

fi.

(ii) For all state i,
q

jœ[n] P fii
ij gú

j = gú
i and for some hú œ R

n satisfying Bellman

optimality equation (2.15) with gú, Bfii
i (gú,hú) = 0 for all i œ Φ

fi.

(iii) fi is gain optimal.

Proof. First, given a policy fi, let rfi be the reward vector induced by fi, rfi
i = rfii

i for

any i œ [n]. Also, let P fi be the transition matrix of the Markov chain induced by fi,

P fi
ij = P fii

ij for any i, j œ [n]. Next, we define the limiting matrix P̄ fi:= C- lim
tæ+Œ

(P fi)t

([Put14, Appendix A.4]). Since the MDP has a finite state space, P̄ fi always exists

and well-defined for any stationary policy fi. It describes the state transition in the

steady regime under policy fi. That is, P̄ fi
ij is the probability that the arm transitions

from state i to j in the steady regime under policy fi. From [Put14, Section A.4], we

have

• P̄ fiP fi = P fiP̄ fi = P̄ fi

• If j /œ Φ
fi, then P̄ fi

ij = 0 for all i œ [n]
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• If fi is unichain, then the rows of P̄ fi are identical.

By [Put14, Theorem 8.2.6], the gain of policy fi can be expressed by gfi
i =

q

jœ[n] P̄ fi
ijrfi

j

for any i œ [n]. In vector notation, gfi = P̄ firfi.

Now, we can prove the lemma.

(i) ∆ (ii) is trivial.

(ii) ∆ (iii): By definition of Ba
i (gú,hú), we have rfi

i ≠ gú
i = hú

i ≠ q

jœ[n] P fi
ijhú

j for any

recurrent state i under fi. Multiply this with P̄ fi
ki, and sum over i œ [n] (if i is not

recurrent, then P̄ fi
ki = 0) gives

ÿ

iœ[n]

P̄ fi
ki

1

rfi
i ≠ gú

i

2

=
ÿ

iœ[n]

P̄ fi
kih

ú
i ≠

ÿ

iœ[n]

P̄ fi
ki

ÿ

jœ[n]

P fi
ijhú

j

¸ ˚˙ ˝

=
q

jœ[n]
P̄ fi

kj
hú

j since P̄ fiP fi=P̄ fi .

= 0.

The gain of fi is P̄ firfi. The above equation shows that P̄ firfi = P̄ figú. Moreover,

the assumption P figú = gú implies that P̄ figú = gú, which in turn implies that

P̄ firfi = gú. This shows that the gain of fi is gú, and therefore fi is gain optimal.

(iii) ∆ (i): If fi is gain optimal, then P figú = gú and P̄ fi(rfi ≠ gú) = 0. The latter

rewrites as
q

iœ[n] P̄ fi
ki

1

rfi
i ≠ gú

i

2

= 0 for all state k. For some hú that satisfies the

optimality equation (2.15) with gú, we have: for all state k

ÿ

iœ[n]

P̄ fi
kiB

fii
i (gú,hú) =

ÿ

iœ[n]

P̄ fi
ki

1

rfi
i ≠ gú

i +
ÿ

jœ[n]

P fi
ijhú

j ≠ hú
i

2

= 0.

As hú satisfies (2.15), we have Ba
i (gú,hú) Æ 0 for all action a œ {0, 1} and all state

i œ [n]. In particular, Bfii
i (gú,hú) Æ 0. This shows that for any state i such that

P̄ fi
ki > 0, one must have Bfii

i (gú,hú) = 0. Such state i are the recurrent states of fi.

This shows that Bfii
i (gú,hú) = 0 for any i œ Φ

fi.

Lemma 5.5 shows that gain optimal policies achieve the maximum of (2.15) on their

recurrent states. We say that the gain optimal policies act optimally in their recurrent

states. With this characterization, in an ergodic MDP, a policy is gain optimal if

and only if it acts optimally in all states. Therefore, the distinction between gain

and Bellman optimal disappears in the ergodic MDP. However, for MDPs that admit

transient states, a policy can be gain optimal without acting optimally in all states,

i.e., it acts optimally in its recurrent states, and possibly randomly in the transient

states. To illustrate this, let us consider the example in Figure 5.3. This example is a

unichain 2-state MDP, where state 1 is the transient state and allows two possible

actions, and state 2 is the recurrent state and allows only one possible action. Then,
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there are two gain optimal policies fi1 and fi2. By computing the solution (gú,hú)

to the Bellman optimality equations (2.14) and (2.15), we see that, for any hú, fi1

does not achieve the maximum of the optimality equation (2.15) on state 1 while fi2

does.
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There are two policies fi1 := ÿ and fi2 := {1}. Both policies
are gain optimal. By solving the Bellman optimality equa-
tions (2.14) and (2.15), we have gú = 1 and hú=c1 where
c can be any real number. Consequently, P fi1

gú = gú and
P fi2

gú = gú, but policy fi1 does not satisfy the maximum
of (2.15) on state 1 for any hú while fi2 does. So, policy fi2

is more restrictive than fi1.

Figure 5.3.: An example where some gain optimal policies do not satisfy the Bellman
optimality equation (2.15) in all states of the MDP. The black arrow shows
state transition of action activate, and the red ones for action rest. The numbers
along the arrows show the reward when executing the actions.

Beside showing the difference between gain and Bellman optimalities, Lemma 5.5

is very useful to prove the properties of Bellman optimal policy in the following

section.

Remark. The characterization of gain optimal policies was analyzed in [Put14;

SF78]. However, it was expressed and proved differently from what we have done

for Lemma 5.5.

5.7.3 Conditions for the uniqueness of the Bellman optimal policy

As mentioned in Section 5.3, we use the interpretation “all Bellman optimal policies”

to define the indexability. We will see in the next chapter that this direction will

require the uniqueness of the Bellman optimal policy. So, we anticipate it in this

section.

Conditions for Bellman optimal policies to induce the same bias vector

The previous lemma shows that a policy is gain optimal if and only if the actions

in its recurrent states satisfy the optimality equation (2.15) for any hú. However,

some gain optimal policies induce a bias vector that does not satisfy (2.15). That

is, in Figure 5.3, the bias of policy fi1 is hfi1

1 = cfi1 ≠ 0.5 and hfi1

2 = cfi1
, and the bias

of policy fi2 is hfi2

1 = cfi2
1, where cfi1

and cfi2
are any real numbers (recall that hfi1
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is the solution of the evaluation equation (2.13) for fi1, and hfi2
for fi2). So, hfi1

does not satisfy the optimality equation (2.15), but hfi2
does. While fi1 and fi2 are

both gain optimal policies, unichain, and share one common recurrent state, namely

state 2 (see Figure 5.3), we still cannot generalize the relationship between hfi1

i and

hfi2

i for all state i œ [n]. In contrast, the following lemma clarifies this question for

Bellman optimal policies that are unichain and share at least one common recurrent

state.

Lemma 5.6

Suppose that two policies fi and ◊ are Bellman optimal, unichain and have at

least one common recurrent state: Φ
fi fl Φ

◊ ”= ÿ.

Then for any hfi and h◊ solutions of Bellman evaluation equation (2.13) for

fi and ◊, there exists a constant c such that hfi
i ≠ h◊

i = c for all state i œ [n].

Moreover, B◊i
i (gú,hfi) = Bfii

i (gú,h◊) = 0 for all state i œ [n].

Proof. We define P̄ fi and P̄ ◊ for policies fi and ◊ as we did in the proof of Lemma 5.5.

Since fi and ◊ are Bellman optimal, hfi and h◊ satisfy the optimality equation (2.15)

together with gú (see Lemma 5.4). In consequence, we have

hfi Ø r◊ ≠ gú + P ◊hfi.

By Lemma 5.5 (i), the above inequality is an equality for any state i œ Φ
◊ because

policy ◊ is gain optimal.

As h◊ satisfies the evaluation equation (2.13), we have

h◊ ≠ hfi Æ r◊ ≠ gú + P ◊h◊ ≠ (r◊ ≠ gú + P ◊hfi) = P ◊(h◊ ≠ hfi),

with equality for any state i œ Φ
◊. This shows that for all t, h◊ ≠hfi Æ (P ◊)t(h◊ ≠hfi),

which implies that h◊ ≠ hfi Æ P̄ ◊(h◊ ≠ hfi), with equality for any state i œ Φ
◊.

Similarly, hfi ≠ h◊ Æ P̄ fi(hfi ≠ h◊), with equality for any state i œ Φ
fi.

Let cfi
i =

q

jœ[n] P̄ fi
ij

1

hfi
j ≠ h◊

j

2

, and c◊
i =

q

jœ[n] P̄ ◊
ij

1

hfi
j ≠ h◊

j

2

. By what we have just

shown, for all state i, we have

c◊
i Æ

¸˚˙˝

equality if i œ Φ◊

hfi
i ≠ h◊

i Æ
¸˚˙˝

equality if i œ Φfi

cfi
i

As both policies are unichain, cfi
i and c◊

i do not depend on state i. Moreover, if there

exists i œ Φ
◊ fl Φ

fi, then cfi
i = c◊

i = c. In consequence, hfi
i ≠ h◊

i = c for all state i.
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Furthermore, by definition of advantage function, Bfii
i (gú,hfi) = Bfii

i (gú,h◊) = 0

and B◊i
i (gú,h◊) = B◊i

i (gú,hfi) = 0 for all state i.

Uniqueness of the Bellman optimal policy

By Definition 5.1, checking if a given Bellman optimal policy is unique is not trivial

due to the multiplicity of hú that satisfies the optimality equation (2.15) with gú.

So, the following lemma provides a condition that can be used to verify if a given

Bellman optimal and unichain policy is the unique Bellman optimal policy.

Lemma 5.7 (Condition for the uniqueness of Bellman optimal policy)

Let fi be a Bellman optimal policy that is unichain. If fi is not the unique

Bellman optimal policy, then there exists a state i and an action a ”= fii such that

Ba
i (gú,hfi) = 0.

Proof. Let ◊ ”= fi be another Bellman optimal policy. Since ◊ is gain optimal, and hfi

satisfies the optimality equation (2.15), Lemma 5.5 (i) implies that B◊i
i (gú,hfi) = 0

for any i œ Φ
◊. If there exists i œ Φ

◊ such that ◊i ”= fii, then the proof is concluded.

Otherwise, ◊i = fii for any state i œ Φ
◊. In such a case, ◊ and fi coincide for all

recurrent states of ◊, and Φ
◊ = Φ

fi. Moreover, as fi is unichain, ◊ is also unichain.

Hence, Lemma 5.6 implies that B◊i
i (gú,hfi) = 0 for all state i. Since ◊ ”= fi, there

exists at least one state i œ [n] such that ◊i ”= fii.

Lemma 5.7 implies that a Bellman optimal and unichain policy fi is the unique

Bellman optimal policy if and only if Ba
i (gú,hfi) < 0 for all action a ”= fii and all

state i. To the best of our knowledge, this lemma is a new contribution to the

literature of MDP. Also, it will play an important role in the indexability testing and

index computation in the next chapter.

Note that if a weakly communicating MDP has a single Bellman optimal policy, the

policy must be unichain. Indeed, suppose that, in a given weakly communicating

MDP, there exists a Bellman optimal policy that is multichain with two recurrent

classes Φ
1 and Φ

2. Then, we can construct two unichain Bellman optimal policies:

a policy fi1 whose set of recurrent states is Φ
1 and the other policy fi2 whose set

of recurrent states is Φ
2. Since the MDP is weakly communicating, the optimal

gain is state-independent: the optimal gain of any state in Φ
1 is the same as the

optimal gain of any state in Φ
2. So, both fi1 and fi2 are gain optimal. Finally, since

the original Bellman optimal policy is multichain, it is possible to construct two
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optimal bias vectors hú1 and hú2 such that fi1 satisfies (2.15) with hú1 and fi2 with

hú2. Therefore, both fi1 and fi2 become Bellman optimal.

In MDPs that are not weakly communicating (see Figure 2.1 and Definition 2.2),

it is possible that the unique Bellman optimal policy is multichain as given by the

example in Figure 5.4.

21

+0

+0.5

+0

+1

The unique Bellman optimal policy is fiú such that fiú
1 = 0

and fiú
2 = 0 (i.e., fiú = ÿ). It is clear that fiú is a multichain

policy. This MDP is not weakly communicating because
state 1 is not accessible by state 2, and there is no transient
state.

Figure 5.4.: An example where the MDP is not weakly communicating, and the unique
Bellman optimal policy is multichain. The black arrow shows state transition
of action activate, and the red ones for action rest. The numbers along the
arrows show the reward when executing the actions.

5.8 Conclusion

In conclusion, we presented the ambiguities in the classical indexability definition

and proposed a new definition that clarified those ambiguities. Along with this new

definition of indexability, we gave the corresponding definition of Whittle index.

We introduced a new notion of Bellman optimality for MDPs with average reward

criterion. We derived a technical lemma to check if a given Bellman optimal policy

was unique. This uniqueness property will play a crucial role in computing Whittle

index.

In the next chapter, we will present a unified algorithm that can compute the Whittle

index of restless Markovian bandit in both discounted and average reward criteria

and the Gittins index in discounted rested bandit.
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Testing Indexability and

Computing Whittle and Gittins

Index in Subcubic Time

6

In the previous chapter, we introduced a new definition of indexability of a restless

bandit arm and defined the Whittle index accordingly. In this chapter, we develop

an algorithm for testing such indexability and computing the Whittle indices of any

finite-state restless bandit arm. Our algorithm works in both discounted and average

reward criteria and can compute the Gittins index. This algorithm will be built

on three tools: (1) a careful characterization of Whittle index that allows one to

recursively compute the kth smallest index from the (k ≠ 1)th smallest, and to test

indexability, (2) the use of the Sherman-Morrison formula to make this recursive

computation efficient, and (3) a sporadic use of the fastest matrix inversion and

multiplication methods to obtain a subcubic complexity. We will show that efficient

use of the Sherman-Morrison formula leads to an algorithm that computes the

Whittle index in (2/3)n3 + o(n3) arithmetic operations, where n is the number of

states of the arm. Furthermore, the careful use of fast matrix multiplication leads to

the first subcubic algorithm to compute the Whittle or Gittins index: By using the

current fastest matrix multiplication, the theoretical complexity of our algorithm

is O(n2.5286). We also develop an efficient implementation of our algorithm that

compute indices of restless Markovian arms with several thousands of states in less

than a few seconds. This work is part of our article published in Mathematical

Methods of Operations Research (MMOR) journal [GGK23].

We present our contributions in Section 6.1 and summarize the related work in

Section 6.2. In Section 6.3, we provide a technical lemma to characterize an

indexable arm. Section 6.4 provides a general idea of how to compute the Whittle

index of a finite-state arm. Then, in Section 6.5, we show how to use the Sherman-

Morrison formula to compute the indices efficiently. We then show how to reduce the

algorithm’s complexity by using the fast matrix multiplication method in Section 6.6.

We compare the numerical result of different variants of our algorithm in Section 6.7.

Next, we show how to adapt this approach to the discounted case in Section 6.8.

After that, in Section 6.9, we provide a detailed comparison between our algorithm
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and the algorithms of [Niñ20; AM20], which are designed for discounted restless

bandits. Finally, we conclude in Section 6.10.

6.1 Contributions

In this chapter, we investigate the Whittle index computation in restless Markovian

bandit problems and present three main contributions.

Our first contribution is to propose a unified algorithm that computes the Whittle

indices of restless bandits for both discounted and average reward criteria. Our

algorithm, which can be viewed as a refinement of the algorithm in [AM20], tests

whether an input arm is indexable and computes the Whittle index if the arm is.

As a byproduct, our algorithm can compute the Gittins index in rested bandits, a

subclass of restless bandits. This algorithm computes the indices in increasing order

and relies on the efficient use of the Sherman-Morrison formula to compute the

Whittle index in (2/3)n3 + O(n2) plus a subcubic time [Str69] to solve a linear

system of order n. Moreover, the algorithm can detect on the fly if a computed

index violates the indexability condition, adding an extra (1/3)n3 +O(n2) arithmetic

operations. This test is optional: the complexity of our algorithm is n3 + o(n3) when

testing the indexability and (2/3)n3 +o(n3) without the test. These two complexities

are comparable to the ones excluding the common initialization phase of reduced-

pivoting indexability (RPI) and fast-pivoting adaptive greedy (FPAG) algorithms

in [Niñ10]. For discounted problems, our algorithm works for any finite-state arm

regardless of its structure. For average reward problems, our algorithm takes as input

any arm and outputs three possibilities: the arm is (1) indexable, (2) non-indexable,

or (3) multichain. We show the correctness of the algorithm, which proves that

for unichain arms, our algorithm can fully characterize if the arm is indexable or

not (that is, the output is either (1) indexable or (2) non-indexable). The possible

outputs of our algorithm are summarized in Figure 6.1.

Our second contribution is to show how to reduce the complexity of the above

algorithm for obtaining the first subcubic algorithm to compute the Whittle index.

This improvement is made possible by the fact that a linear system can be solved in

subcubic time. By carefully reordering the computations, we show that it is possible

to reduce the use of the Sherman-Morrison formula at the price of solving more

linear systems. The subcubic complexity comes by striking a good balance between

having too many or too few linear systems to solve. Using the current fastest matrix

multiplication method, our algorithm can test indexability and compute the Whittle
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Indexable Non-indexable

multichain

unichain

Algorithm returns multichain

Algorithm
returns

indexable

Algorithm
returns non-
indexable

Algo. returns
indexable

Algo. returns
non-indexable

Undiscounted
“ = 1

Discounted
“ < 1

Figure 6.1.: Possible outputs of our algorithm: For unichain or discounted problems, our
algorithm tests indexability and returns the index if and only if the problem is
indexable. For some multichain problems, the algorithm can test the indexa-
bility and compute the Whittle index. For the others, it only returns that the
problem is multichain.

index in O(n2.5286). Our algorithm is also the first subcubic algorithm to compute

the Gittins index.

Our last contribution is to provide an open-source implementation of our algorithm

in Python with Numba, and to present an empirical evaluation of the performance of

our implementation. Our results show that the algorithm is very efficient in testing

indexability and computing the Whittle index. Moreover, our simulations indicate

that the subcubic version of our algorithm not only has an asymptotically small

complexity but is also, in practice, faster than our original (2/3)n3 algorithm. Testing

indexability and computing the index takes less than one second for n = 1000 states

and less than 10 minutes for n = 15000 states. This is 15 to 20 times faster than

the original computation times reported in [Niñ20] (for a Matlab implementation),

and about 5 times faster than an optimized implementation of [Niñ20] (for a Julia

implementation).

6.2 Related work

The computation of Gittins index has received a lot of attention in the past, see

for instance [CK86; KV87; Niñ07a; Son08] and the recent survey [CM14]. For an

n-state arm, the algorithms having the smallest complexity perform (2/3)n3 + O(n2)

arithmetic operations [CM14]. Note that on page 4 of [Niñ20], the author claims

that it is unlikely that this complexity can be improved. As we see later, we do

improve upon this complexity.
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Concerning the Whittle index, to the best of our knowledge, there are very few

efficient general-purpose algorithms to test indexability. [Niñ10] is the only work

that proposes an efficient algorithm to test indexability. Otherwise, most papers

studying the Whittle index either assume that the studied model is indexable or focus

on specific classes of restless bandits for which the structure of arms can be used to

show indexability, see, i.e., [AAR11; AM19b; AM21; BP17]. Assuming indexability,

the computation of Whittle index has been considered by a few papers.

For restless bandits with a discount factor “ œ (0, 1), the most efficient algorithm

for computing the Whittle index was recently presented in [Niñ20]. This algorithm,

called fast-pivoting algorithm, performs (2/3)n3 + O(n2) arithmetic operations1

if the initialization phase is excluded from the count. This is done by using the

parametric simplex method and exploiting the special structure of this linear system

to reduce the complexity of simplex pivoting steps. This fast-pivoting algorithm

is an efficient implementation of the adaptive-greedy algorithm [Niñ07b], which

outputs the Whittle index if and only if the arm satisfies a technical condition

called partial conservation law (PCL), which is more restrictive than just being

indexable. So, it is not applicable for all indexable restless bandits. Based on a

geometric interpretation of the Whittle index, the authors in [AM20] propose a

refinement of the adaptive-greedy algorithm of [Niñ07b] to compute the Whittle

index of all indexable restless bandits. For an n-state arm, the refined algorithm of

[AM20] achieves a O(n3) complexity by using the Sherman-Morrison formula. The

authors also propose a few checkable conditions to test indexability. However, those

conditions are not necessary for indexability, which means that if an arm does not

verify the conditions, we cannot conclude that the arm is non-indexable, and an

algorithm to check indexability is still needed. Also, no detailed description is given

for adapting those conditions and their algorithm to restless bandits with average

reward criterion. A thorough comparison between our algorithm and [AM20; Niñ20]

will be given in this chapter. While computing the Whittle indices of a known arm’s

model is still a challenge, there is exciting work that tries to learn Whittle index when

only the arm’s simulator is given, and the arm’s model is unknown. For instance,

[GJN21; AB22; Fu+19] use Q-learning algorithm to estimate Whittle index as time

evolves in finite-state restless bandits. Moreover, the work of [Nak+21] uses a

deep reinforcement learning framework to estimate the Whittle indices of arms with

a large state space or convoluted transition kernel, assuming a notion of strong

indexability.

For restless bandits with average reward criterion “ = 1, the author of [Niñ20]

only provides a brief description of how the fast-pivoting algorithm developed for

1multiplications and additions of real numbers, regardless of their values
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discounted criterion can be adapted, although no explicit algorithm is given in that

paper. For continuous-time n-state restless bandits, the work of [AGV21] proposes

an algorithm checking the indexability and computing the Whittle index with a

complexity exponential in the number of states n. According to Remark 4.1 of that

paper, this complexity can be reduced to O(n5) if the restless bandit is known to be

indexable, and threshold-based policies are optimal. It is stated that their approach

is not applicable for discounted restless bandits. For learning aspect, the work of

[GJN21] shows as to learn Whittle index in average reward criterion by maintaining

two Q-functions, updating them using Q-learning algorithm, and deducing the

Whittle index from them when needed. The way the Whittle indices are computed

is very close to our work but less efficient than our algorithm since the authors are

more interested in learning the index.

6.3 Characterization of indexability in restless arm with

average reward criterion

As what is done in the previous chapter, we consider the ⁄-penalized MDP defined

based on a restless Markovian arm È[n], {0, 1}, {r0, r1}, {P 0,P 1}Í having n finite

states.

In this chapter, we also introduce some more notations when developing our al-

gorithm. The notations in this chapter and the previous chapter are used only for

Part II of this thesis.

The following lemma proposes a characterization of any indexable arm, which we

will later use to derive our algorithm.

Lemma 6.1 (Characterization of indexable arm)

In an n-state arm, the two following properties are equivalent.

(i) The arm is indexable.

(ii) There is a non-decreasing sequence of penalties µ0
min := ≠Œ Æ µ1

min Æ
µ2

min Æ · · · Æ µn
min Æ µn+1

min := +Œ and a sequence of policies fi1 := [n] )

fi2 ) · · · ) fin+1 := ÿ such that:

• If ⁄ œ (µk≠1
min , µk

min), there exists a unique Bellman optimal policy fik.

6.3 Characterization of indexability in restless arm with average

reward criterion
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• If k is such that µk≠1
min < µk

min, then all Bellman optimal policies for

the penalty µk≠1
min contain fik, and fik contains all Bellman optimal

policies for the penalty µk
min.

Moreover, if the arm is indexable, then the index of state i is µk
min, where k Ø 1 is

such that i œ fik \ fik+1.

In the above lemma, we use a subscript “min” in the penalties µk
min in order to be

consistent with the same quantities used in Algorithm 2 and 3. The signification

of this “min” is because it will be a minimum of values of the form µk
i . We should

stress that these quantities (and the Whittle index ⁄i) can either be finite or infinite.

We recall that when we say “a policy fi is optimal for the penalty +Œ”, this means

“there exists a penalty ⁄̄ such that fi is optimal for all ⁄ Ø ⁄̄”. Symmetrically, when

we say “a policy fi is optimal for the penalty ≠Œ”, this means “there exists a penalty

⁄ such that fi is optimal for all ⁄ Æ ⁄”. Also, the last part of the lemma implies that

fik is the unique Bellman optimal policy for all penalty ⁄ œ (µk≠1
min , µk

min).

Proof. The lemma is a consequence of the indexability’s definition, namely Defini-

tion 5.2.

(i) ∆ (ii) – Assume first that the arm is indexable. By Lemma 5.3, there exists a

sequence {⁄i}iœ[n] such that ⁄i is the Whittle index of state i, and if fi œ Π
ú(⁄) is

any Bellman optimal policy for the penalty ⁄, then fii = 1 if ⁄ < ⁄i, and fii = 0

if ⁄ > ⁄i. Now, let ‡k be the state with the kth smallest index (where ties are

broken arbitrarily). Let µk
min := ⁄‡k be the index of the state ‡k, and let ⁄ œ

(µk≠1
min , µk

min). Then, any Bellman optimal policy for a penalty ⁄ < ⁄‡k≠1 contains

fik := [n] \ {‡1, . . . , ‡k≠1}. Similarly, fik contains any Bellman optimal policy for all

penalty ⁄ > ⁄‡k≠1 . This implies that the policy fik is the unique Bellman optimal

policy for all ⁄ œ (µk≠1
min , µk

min).

(ii) ∆ (i) – The property (ii) implies that fik is the unique Bellman optimal policy

for all ⁄ œ (µk≠1
min , µk

min). So, the condition in Definition 5.2 is satisfied.

6.4 Condition for indexability and basic algorithm

This section aims to provide a basic algorithm to detect whether an arm is indexable

and, if so, compute the Whittle index of all states. This algorithm tries to construct a

sequence of unichain policies fi1 ) fi2 ) . . . that satisfy the conditions of Lemma 6.1.
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We prove the correctness of our algorithm: if it can construct such a sequence, then

the problem is indexable, and the computed indices are correct. On the contrary, if

the algorithm cannot compute such a sequence of policies, this is either because the

arm is not indexable or because the arm is multichain.

6.4.1 Condition for Bellman optimality

In this section, we provide two technical lemmas that we will use in our algorithm.

They provide conditions to check whether a given unichain policy is Bellman optimal

and, if so, whether it is the unique Bellman optimal policy.

Since ⁄ is a variable, the gain and bias functions depend on ⁄ in the ⁄-penalized

MDP. We will write them as the functions of ⁄: For instance, given a policy fi, its

gain is gfi(⁄), and its bias is hfi(⁄). Also, the optimal gain is gú(⁄).

Let fi ™ [n] be a unichain policy and (gfi,hfi) satisfies the Bellman evaluation

equation (2.13) for fi (see Proposition 2.1). Along with the notion of advantage in

Section 5.4, we denote by –fi
i the active advantage in state i under policy fi, which is

the difference between the value in state i of action activate and the one of action

rest. It is defined by:

–fi
i (⁄) := r1

i ≠ r0
i ≠ ⁄ +

nÿ

j=1

(P 1
ij ≠ P 0

ij)hfi
j (⁄). (6.1)

For any unichain policy fi, the evaluation equation (2.13) uniquely determines the

vector hfi up to an additive constant c1 (see [Put14, Chapter 8]). Hence, the active

advantage vector αfi is uniquely determined for any unichain policy fi. As we will

see later, the function αfi(⁄) is affine in ⁄. Note that despite the name “advantage”,

αfi(⁄) can be negative.

Our algorithm computes the Whittle index in increasing order by trying to eliminate

states one by one. The following lemma shows that to identify the next state to

eliminate, one should look at when the active advantage of the active state equals

0. In this lemma, fi ° {i} denotes the symmetric difference between fi and {i}, i.e.,

fi ° {i} = fi \ {i} if i œ fi and fi ° {i} = fi fi {i} if i ”œ fi. Also, the active advantage

provides necessary and sufficient condition for a unichain policy to be Bellman

optimal, and/or to be the unique Bellman optimal policy.
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Lemma 6.2

In a finite-state arm, let fi be a unichain policy. Then, for any penalty ⁄:

(i) Suppose that fi is gain optimal. Then, fi is Bellman optimal if and only if

–fi
i (⁄) Ø 0 for all i œ fi and –fi

i (⁄) Æ 0 for all i /œ fi.

(ii) Suppose that fi is Bellman optimal and –fi
i (⁄) = 0. Then, fi ° {i} is

also Bellman optimal. In addition, if fi ° {i} is unichain, then αfi(⁄) =

αfi°{i}(⁄).

(iii) Suppose that fi is Bellman optimal. Then, fi is the unique Bellman optimal

policy if and only if –fi
i (⁄) > 0 for all i œ fi and –fi

i (⁄) < 0 for all i /œ fi.

Proof. For the first point (i), one direction of the equivalence is direct: If policy fi

is Bellman optimal, then –fi
i (⁄) Ø 0 for all i œ fi and –fi

i (⁄) Æ 0 for all i /œ fi. This

is because a bias vector hfi that is a solution of Bellman evaluation equation (2.13)

satisfies Bellman optimality equation (2.15).

We now prove the other direction of Point (i). To do so, we will use Lemma 5.4 (iii).

Since fi is gain optimal and unichain, gú = gfi = gfi
1. This implies that P figú = gú.

If –fi
i (⁄) Ø 0 for all i œ fi and –fi

i (⁄) Æ 0 for all i /œ fi, then the advantage function

Ba
i (gú,hfi) = Ba

i (gfi,hfi) Æ 0 for all action a œ {0, 1} and all state i œ [n]. Then,

Lemma 5.4 (iii) applies.

For the second point (ii), since fi is unichain, the optimal gain gú
i = gfi for all i œ [n].

So, fi ° {i} satisfies the first condition of (5.2). Moreover, –fi
i (⁄) = 0 implies that

policy fi ° {i} verifies evaluation equation (2.13) for fi. Since fi is Bellman optimal,

hfi is one of the solutions of the optimality equation (2.15). So, fi ° {i} satisfies the

second condition of (5.2). We conclude that fi ° {i} is Bellman optimal. In addition,

if fi ° {i} is unichain, then hfi is a solution of the evaluation equations (2.13) for

policy fi ° {i}. Consequently, αfi(⁄) = αfi°{i}(⁄).

Points (i) and (ii) also show one direction of the equivalence of (iii): If policy fi

is the unique Bellman optimal policy, then for all state i, –fi
i (⁄) ”= 0. The non-

trivial property is the other direction of the equivalence. This is a consequence of

Lemma 5.7 that we proved in the previous chapter.

Note that the main difficulty in proving Lemma 5.7 is that we do not assume the arm

to be unichain: for a unichain arm, the bias vector of an optimal policy is unique up

to a constant vector (see [SF78] and [Put14, Section 8.4]). This implies that if fi

is a Bellman optimal policy and –fi
i (⁄) ”= 0 for all i, then fi is the unique Bellman
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optimal policy. The proof of Lemma 5.7 that we did in the previous chapter does not

require the MDP to be unichain, but only the policy fi to be Bellman optimal and

unichain.

(a) Indexable arm with 3 states (b) Non-indexable arm with 3 states

Figure 6.2.: The active advantage as a function of penalty for two unichain examples, one
is indexable (Figure 6.2a), and the other is not (Figure 6.2b). The red dots
mark where the lines change their slope.

To illustrate Lemma 6.1 and Lemma 6.2, we consider two three-state arms. The first

arm is presented in Figure 6.2a and has the following numerical data:

P 0=

S

W
W
U

0.363 0.503 0.134

0.082 0.754 0.164

0.246 0.029 0.724

T

X
X
V
P 1=

S

W
W
U

0.172 0.175 0.653

0.055 0.931 0.014

0.155 0.627 0.218

T

X
X
V
r1=

S

W
W
U

0.441

0.803

0.426

T

X
X
V
r0=0

The second arm is presented in Figure 6.2b and has the following numerical data:

P 0=

S

W
W
U

0.005 0.793 0.202

0.027 0.558 0.415

0.736 0.249 0.015

T

X
X
V
P 1=

S

W
W
U

0.718 0.254 0.028

0.347 0.097 0.556

0.015 0.956 0.029

T

X
X
V
r1=

S

W
W
U

0.699

0.362

0.715

T

X
X
V
r0=0 (6.2)

For each model, we plot in Figure 6.2 the active advantage –
fiú(⁄)
i (⁄) as a function

of the penalty ⁄ for all state i œ {1, 2, 3}. By Lemma 6.2, we know that an optimal

policy should activate all states having a positive advantage and rest all states having

a negative advantage. Combined with the characterization of Lemma 6.1, this shows

that:
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• The model presented in Figure 6.2a is indexable: the optimal policy is a

non-increasing function of ⁄, and the indices are ⁄1 ¥ 0.3, ⁄2 ¥ 0.8 and

⁄3 ¥ 0.7.

• The model presented in Figure 6.2b is not indexable: the optimal policy

fiú(0.7) = {3} is not included in fiú(0.6) = {1}.

6.4.2 Overview of the algorithm

Our algorithm computes the Whittle index in increasing order by navigating through

unichain Bellman optimal policies and using the characterization provided by

Lemma 6.1. It follows the graphical construction given in Figure 6.2a. It uses

the following facts:

• If policy fi1 := [n] is unichain, then αfi1
is decreasing in ⁄

• Similarly, if policy fin+1 := ÿ is unichain, then αfin+1
is decreasing in ⁄

• For an indexable arm, computing the index can be done by a greedy algorithm

that constructs a sequence of penalties µ1
min Æ µ2

min Æ · · · Æ µn
min and a

sequence of unichain policies fi1 ) · · · ) fin by looking at where –fik

i (⁄)

intersects horizontal axis for all i œ fik.

• The arm is indexable if and only if for all k such that µk≠1
min < µk

min, the

constructed fik is the largest Bellman optimal policy for the penalty µk
min.

In order to compute Whittle index and test indexability, our algorithm needs all

policies fik to be unichain. It does not require the arm to be unichain. This leads to

Algorithm 2, that we write in pseudocode. This algorithm relies on two subroutines:

on Line 6, to compute the next index and on Line 7 to test if a policy is Bellman

optimal. We will describe later in this chapter how to implement these functions

in an efficient manner. Note that in all the chapter, we use the superscript k (i.e.,

fik, µk, ‡k) to refer to the quantities computed at iteration k. We use the subscripts i

or j (i.e., fii, ⁄i, µi, fij) to refer to the quantities related to states i or j.

Note that when µk
min = +Œ, the quantity –fik

i (µk
min) defined in Line 6 of Algorithm 2

should be understood as lim⁄æŒ –fik

i (⁄) œ R fi {≠Œ, +Œ}. These limits are well-

defined because the functions –s are affine in ⁄.

To illustrate how the algorithm works, we plot in Figure 6.3 the values computed

by the algorithm for the two arms represented in Figure 6.2. For both models

(indexable and non-indexable), the algorithm starts with the policy [n] for which
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Algorithm 2: Test indexability and compute Whittle index (if indexable).
Input :n-state arm

1 Init.

2 Set fi1 := [n], µ0
min := ≠Œ

3 if fi1 is multichain then return the arm is multichain.

4 for k = 1 to n do

5 Compute αfik
(⁄)

6 Let µk
min := inf{⁄ Ø µk≠1

min : ÷i œ fik, –fik

i (⁄) = 0}

7 if µk≠1
min <µk

min and for some i /œ fik, –fik

i (µk
min) Ø 0 then

8 return the arm is not indexable
9 if µk

min = +Œ then

10 Set ⁄i := +Œ for all i œ fik

11 return the arm is indexable and the indices are {⁄i}iœ[n].

12 Let ‡k œ fik be such that –fik

‡k (µk
min) = 0 and ⁄‡k = µk

min

13 Set fik+1 := fik \ {‡k}

14 if fik+1 is multichain then return the arm is multichain
15 return the arm is indexable and the indices are {⁄i}iœ[n].

(a) Indexable arm with 3 states. Note that the
algorithm does not compute α

fi4

. It checks if
policy π4 = ÿ is unichain or not. If it is, then
αfi4

i is decreasing in λ for each i.

(b) Non-indexable arm with 3 states. The
algorithm stops at iteration 3 because
αfi3

3 (µ3
min) > 0 (the green line at the zone

circled with red ellipse).

Figure 6.3.: The active advantage –π
k

i
(⁄) computed by the algorithm, for the two examples

of Figure 6.2.

the derivative of the active advantage with respect to ⁄ is ≠1 for all states. It then

computes µ1
min which is the potential index of State ‡1 = 1 for the example 6.3a

and of State ‡1 = 3 for the example 6.3b. The algorithm then moves to iteration 2

and computes µ2
min > µ1

min for both models and observes that –fi2

‡1(µ2
min) < 0. Then
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the algorithm moves to iteration 3 and computes µ3
min > µ2

min. There are now two

cases:

• For the example in 6.3a, the algorithm verifies that fi4 := ÿ is unichain (–ÿ
i is

decreasing in ⁄ for all i), and returns that the arm is indexable.

• For the example in 6.3b, the algorithm realizes that –fi3

‡1(µ3
min) > 0, which

shows that this model is not indexable.

Note that for the indexable example of Figure 6.3a, the active advantage function

is not a decreasing function of ⁄. Hence, this example is neither PCL-indexable

(defined in [Niñ20, Definition 3]) nor strongly-indexable (defined in [Nak+21]).

However, this does not prevent our algorithm from working.

6.4.3 Correctness of Algorithm 2

The following result shows that Algorithm 2 is correct.

Theorem 6.3 (Correctness of Algorithm 2)

Given an n-state arm:

(i) if Algorithm 2 outputs “the arm is indexable and the indices are {⁄i}iœ[n]”,

then the arm is indexable and each ⁄i is the Whittle index of state i;

(ii) if Algorithm 2 outputs “non-indexable”, then the arm is non-indexable;

(iii) if Algorithm 2 outputs “multichain”, then the arm is multichain.

A direct consequence of Theorem 6.3 is that for unichain arms, Algorithm 2 provides

a full characterization of indexability.

Corollary 6.4 (Full characterization of indexability of unichain arm)

Given a unichain arm with finite states, Algorithm 2 outputs “the arm is index-

able” if and only if it is indexable.

Note that Algorithm 2 does not require the arm to be unichain to work. The

required condition is that all Bellman optimal policies {fik}kØ1 that Algorithm 2

uses are unichain. In particular, there exist examples of arms that are multichain

and indexable and for which the algorithm returns “indexable”. Similarly, there

exist examples of arms that are multichain and non-indexable and for which the

algorithm returns “non-indexable”. We provide such examples in Figure 6.4.
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1 2 3

+0

+0 +10

1 ≠ ⁄

≠⁄

≠⁄
4

Non-indexable subpart
(for instance: Eq.(6.2))≠1000

1000≠⁄

(a) indexable arm (b) non-indexable arm.

Figure 6.4.: Two examples of multichain arms for which our algorithm does not return
“multichain” but returns “indexable” (a) or “non-indexable” (b).

In the first example shown in Figure 6.4(a), the arm is multichain because the

policy {3} has two recurrent classes: {1, 2} and {3}. Yet, this arm is indexable and

the indices are {11, 8, ≠10}. Our algorithm will output that this arm is indexable

because it will explore the sequence of policies fi1, fi2, fi3, fi4, where

• fi1 = {1, 2, 3} is the unique Bellman optimal policy for ⁄ < ≠10;

• fi2 = {1, 2} is the unique Bellman optimal policy for ⁄ œ (≠10, 8);

• fi3 = {1} is the unique Bellman optimal policy for ⁄ œ (8, 11);

• fi4 = ÿ is the unique Bellman optimal policy for ⁄ > 11.

All these policies are unichain, and the policy {3} will never be explored. Hence, our

algorithm will output "indexable" for this case and will compute the indices.

In the second example, shown in Figure 6.4(b), we construct a non-indexable arm

by taking the non-indexable 3-state example shown in Figure 6.3b (parameters are

given in (6.2)) to which we add an extra state “4”. For this state, the action activate

has a very high reward and leads to the non-indexable recurrent class. The action

rest has a very low reward and stays in state 4. Any policy that rests the arm in state

4 is multichain. The algorithm will start by exploring policies that activate state 4.

As for the original example presented in Figure 6.3b, our algorithm will realize that

the arm is non-indexable when exploring values around ⁄ ¥ 0.70. The algorithm

will stop and answer “not indexable” before trying the action rest in state 4 because

the active avantage for state 4 is larger than 1000 ≠ ⁄. The output of the algorithm

is thus "non-indexable".

Our algorithm works by exploring unichain policies because (in general) the bias

vector of multichain policy is not unique up to a constant vector. The characterization

of Bellman optimal policies is much more difficult for multichain models, and the

notion of indexability becomes more elusive (see the examples in Figure 5.2 in

the previous chapter). When Algorithm 2 returns “multichain”, it means that the
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algorithm is unable to decide whether the arm is indexable or not (but the algorithm

knows that the arm is multichain because it has just found a multichain policy).

Proof of Theorem 6.3. Proof of (i) – We first prove by induction on k that:

If Algorithm 2 completes iteration k Ø 1, then fik and fik+1 are unichain and

(A) fik is the unique Bellman optimal policy for all ⁄ œ (µk≠1
min , µk

min);

(B) fik+1 is Bellman optimal for µk
min and αfik+1

(µk
min) = αfik

(µk
min).

Base case k = 1: As we prove later in (6.16), ˆ–fi1

i
ˆ⁄

= ≠1 for all i œ [n]. So, for

all i œ fi1, –fi1

i (⁄) is decreasing in ⁄. By definition, µ1
min is the smallest ⁄ such

that one of the –fi1

i (⁄) = 0. Hence, for all ⁄ < µ1
min: –fi1

i (⁄) > 0. By Lemma 6.2,

this shows that fi1 is the unique Bellman optimal policy for all ⁄ œ (µ0
min, µ1

min), so

(A) is true. Moreover, since fi1 is Bellman optimal for the penalty µ1
min and fi2 is

unichain, Lemma 6.2 implies that fi2 is Bellman optimal for the penalty µ1
min and

αfi2
(µ1

min) = αfi1
(µ1

min). This shows (B).

Figure 6.5.: Illustration of what happens when µk−1

min
< µk

min
, and when the test of Line 7 is

successful (recall that the function –π
k

i
(⁄) is affine in ⁄). The black lines are

the advantage functions –π
k

i
(⁄) of active state i œ fik. The dashed red lines are

the advantage functions –π
k

i
(⁄) of passive state i ”œ fik.

Suppose that the induction is true until iteration k ≠ 1 and that the algorithm

completes iteration k. If µk≠1
min = µk

min, (A) is trivial and (B) is a direct consequence of

the definition of µk
min and Lemma 6.2. Consider now that µk≠1

min < µk
min and observe

what happens in Figure 6.5. By the induction hypothesis, fik is Bellman optimal for
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the penalty µk≠1
min . Moreover, by the definition of µk

min, together with µk≠1
min < µk

min,

–fik

i (µk≠1
min ) ”= 0 for all i œ fik. Hence:

–fik

i (µk≠1
min ) > 0 for i œ fik and –fik

i (µk≠1
min ) Æ 0 for i ”œ fik.

Finally, thanks to the test on Line 7 of the algorithm, we have:

–fik

i (µk
min) Ø 0 for i œ fik and –fik

i (µk
min) < 0 for i ”œ fik. (6.3)

In consequence, for each ⁄ œ (µk≠1
min , µk

min), –fik

i (⁄) > 0 for i œ fik and –fik

i (⁄) < 0 for

i /œ fik. Lemma 6.2 implies that fik is the unique Bellman optimal policy for each

⁄ œ (µk≠1
min , µk

min). This shows (A). Also, (6.3) implies that fik is Bellman optimal

for the penalty µk
min. Combine this with the fact that fik+1 is unichain, Lemma 6.2

implies that fik+1 is Bellman optimal for µk
min and αfik+1

(µk
min) = αfik

(µk
min). This

shows (B). So, the induction is also true for iteration k.

This shows that the induction property is true for all k œ [n]. In particular, when

fin+1 := ÿ is unichain, –fin+1

i is decreasing in ⁄ as we prove later in (6.17) that
ˆ–fin+1

i
ˆ⁄

= ≠1 for all i œ [n]. Combine this with the fact that –fin+1

i (µn
min) =

–fin

i (µn
min) Æ 0 for all i, Lemma 6.2 implies that fin+1 is the unique Bellman op-

timal policy for ⁄ > µn
min. In summary, there are two cases for which the algorithm

outputs that the arm is indexable:

1. if the algorithm goes until the end of iteration n, then the sequence of values

{µk
min}kœ[n+1] and of policies {fik}kœ[n+1] satisfies the conditions of Lemma 6.1

(ii) and the arm is indexable.

2. if the algorithm stops at iteration k because µk
min = +Œ, then one can set

µk+1
min := . . . := µn+1

min := +Œ and define a sequence of policies fik+1 ) · · · )

fin+1 := ÿ by eliminating all states of fik in an arbitrary order. These two

sequences satisfy the conditions of Lemma 6.1 (ii) and the arm is indexable.

Proof of (ii) – Our algorithm outputs non-indexable if there exists an iteration k

and a state j /œ fik, such that –fik

j (µk
min) Ø 0 when µk≠1

min < µk
min. We know that fik

is Bellman optimal for µk≠1
min , otherwise the algorithm would have stopped before.

Assume that:

All Bellman optimal policies for any ⁄ œ (µk≠1
min , µk

min] are included in fik. (6.4)

We will see that this leads to a contradiction. We distinguish two possibilities:
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1. fik is Bellman optimal for the penalty µk
min – This implies that –fik

i (µk
min) Æ 0

for all i ”œ fik which, together with –fik

j (µk
min) Ø 0, implies that –fik

j (µk
min) = 0.

By Lemma 6.2, this would imply that fik fi {j} is Bellman optimal for µk
min.

This is in contradiction with (6.4).

2. fik is not Bellman optimal for µk
min – In this case, we denote ⁄̃ the smallest

penalty ⁄ œ [µk≠1
min , µk

min] such that there exists fi ( fik that is Bellman optimal

for ⁄̃ (it exists because fik is not Bellman optimal for µk
min, and we assumed

(6.4)). By definition of ⁄̃, fi and fik are both Bellman optimal for the penalty

⁄̃. Let i œ fik \ fi. By Lemma 6.2, this implies that –fik

i (⁄̃) = 0. The problem is

that by definition, µk
min is the smallest penalty ⁄ for which there exists i œ fik

such that –fik

i (⁄) = 0. This implies that ⁄̃ = µk
min which in turn implies that fik

is optimal for µk
min. This leads to a contradiction.

This shows that neither case 1 nor 2 are possible. So, (6.4) cannot be true. In

consequence, the negation of (6.4) is true: there exists ⁄ > µk≠1
min and fi ”™ fik such

that fi is Bellman optimal for ⁄. This contradicts Definition 5.2 and therefore implies

that the arm is not indexable.

Proof of (iii) – if our algorithm outputs multichain, then the arm is multichain. This

is straightforward based on the definition of multichain MDP.

We should note that by Line 12, it is possible to have µk
min = µk≠1

min . This happens

when several states have the same value of Whittle index. This is not problematic

because we are sure that ‡k ”= ‡k≠1 by Line 13.

In the proof of Theorem 6.3 (i), we showed that when policy [n] is unichain, the

function –fi1

i (⁄) is decreasing in ⁄, which implies that it crosses the line 0 at some

finite value µ1
i . This implies that for an indexable arm, if [n] is unichain then the

Whittle index are all strictly larger than ≠Œ. A symmetric argument shows that if

policy ÿ is unichain, then all Whittle index are strictly smaller than +Œ. This implies

the following result.

Corollary 6.5 (Whittle index value of indexable unichain arm is finite)

Given a unichain arm with n states, if the arm is indexable, then the indices of

the n states are finite: ⁄i ”œ {≠Œ, +Œ} for all i œ [n].

This is not necessarily true for multichain arms. Consider the two examples of

Figure 6.6.
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21 1 ≠ ⁄

+1

1 ≠ ⁄

+0

(a) Our algorithm returns
“indexable”.

21 +0

1 ≠ ⁄

+0

≠⁄

(b) Our algorithm returns
“multichain”.

Figure 6.6.: Example of an indexable multichain problem with infinite Whittle index. Tran-
sitions are deterministic, and labels on edges indicate rewards (for the ⁄-
penalized arm). Solid black arrows correspond to action “activate”, and dashed
red ones to the action “rest”.

The examples are multichain because policy ÿ has two irreducible classes for example

(a) and policy {1, 2} has two irreducible classes for example (b). These two problems

are indexable:

• For (a), the Bellman optimal policy for ⁄ < 0 is {1, 2} and {1} for ⁄ > 0. The

indices are ⁄2 = 0 and ⁄1 = +Œ.

• For (b), the Bellman optimal policy is {2} for ⁄ < 0 and {1, 2} for ⁄ > 0. The

indices are ⁄1 = 0 and ⁄2 = ≠Œ.

For the first example, our algorithm returns the correct indices because the con-

structed policies are fi1 := {1, 2} ) fi2 := {1}, and they are both unichain. For

the second example, our algorithm will start with the policy {1, 2} and will stop by

saying that this example is multichain.

6.4.4 Naive implementation of Algorithm 2 (in O(n4))

For a given penalty ⁄, we consider a policy fi that is Bellman optimal and unichain.

Recall that rfi and P fi are reward vector and transition matrix induced by policy

fi. Also, gú(⁄) is the maximal gain, and hfi(⁄) œ R
n is a solution of the evaluation

equation (2.13). We consider hfi(⁄) such that hfi
1 (⁄) = 0. Recall from (2.13) that for

all i œ [n] :

gú(⁄) + hfi
i (⁄) = rfi

i ≠ ⁄fii +
nÿ

j=1

P fi
ijhfi

j (⁄). (6.5)

The above system is a system of n + 1 linear equations with n + 1 variables (the

additional equation begins with hfi
1 (⁄) = 0). As fi is unichain, the maximal gain

gú(⁄) and hfi(⁄) are uniquely determined by the system of linear equations (6.5),

together with the condition that hfi
1 (⁄) = 0. Note that in (6.5) the sum is for j = 1

to n. Since hfi
1 (⁄) = 0, it can be transformed into a sum from j = 2 to n.
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Let us define the vector vfi(⁄) := [gú(⁄) hfi
2 (⁄) . . . hfi

n(⁄)]€ which is similar to the

vector hfi(⁄) in which we replaced hfi
1 (⁄) by gú(⁄). We can write Equation (6.5)

under a matrix form as:

Afivfi(⁄) = rfi ≠ ⁄π, (6.6)

where rfi:=[rfi1
1 . . . rfin

n ]€, π:=[fi1 . . . fin]€, and Afi is the following square ma-

trix:

Afi:=

S

W
W
W
W
W
U

1

1 1

1
. . .

1 1

T

X
X
X
X
X
V

≠

S

W
W
W
W
W
U

0 P fi
12 . . . P fi

1n

0 P fi
22 . . . P fi

2n
...

...

0 P fi
n2 . . . P fi

nn

T

X
X
X
X
X
V

=

S

W
W
W
W
W
U

1 ≠P fi
12 . . . ≠P fi

1n

1 1≠P fi
22 . . . ≠P fi

2n
...

1 ≠P fi
n2 . . . 1≠P fi

nn

T

X
X
X
X
X
V

.

(6.7)

The following lemma shows that Afi is invertible if and only if policy fi is unichain.

Lemma 6.6

Given a two-action MDP È[n], {0, 1}, {r0, r1}, {P 0,P 1}Í, let P fi be the transition

matrix under a Bellman optimal policy fi. Policy fi is unichain if and only if the

matrix Afi defined in (6.7) is invertible.

Proof. Afi is not invertible if there exists a column vector u ”= 0 such that u€Afi = 0.

We prove that such u does not exist when policy fi is unichain. Let u œ R
n be an

arbitrary vector such that u€Afi = 0. Then, we have

Y

]

[

qn
i=1 ui = 0

ui ≠ qn
j=1 ujP fi

ji = 0, for 2 Æ i Æ n

Combining the above equation with
q

j P fi
ji = 1, we get:

u1 = ≠
nÿ

i=2

ui = ≠
nÿ

i=2

nÿ

j=1

ujP fi
ji = ≠

nÿ

j=1

uj(1 ≠ P fi
j1) =

nÿ

j=1

ujP fi
j1,

where we used that
qn

i=1 ui = 0 to obtain the last equality. This shows that

Y

]

[

qn
i=1 ui = 0

u€P fi = uT
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The set of vector u such that u€P fi is a vector space. It is of dimension 1 if and

only if fi is unichain, in which case the vector u verifying u€P fi = u€ are multiples

of a stationary distribution under policy fi [Put14]. Thus, if the policy fi induces a

unichain Markov chain, then
qn

i=1 ui = 0 implies u = 0. If policy fi is not unichain,

there exists u ”= 0 such that
qn

i=1 ui = 0.

By Lemma 6.6, vfi is an affine function of ⁄:

vfi(⁄) = (Afi)≠1(rfi ≠ ⁄π) = (Afi)≠1rfi ≠ ⁄(Afi)≠1
π (6.8)

For a state i, let ”i := r1
i ≠ r0

i , ∆i1 := 0 and ∆ij := P 1
ij ≠ P 0

ij for j œ {2, . . . , n}. By

definition of active advantage function (6.1), we have:

α
fi(⁄) = δ ≠ ⁄1 + ∆vfi(⁄).

For each active state i, we want to find the smallest penalty µk
i Ø µk≠1

min such that

–fik

i (µk
i ) = 0. Suppose that fik≠1 and fik are unichain and fik≠1 is Bellman optimal

for µk≠1
min . By Lemma 6.2, αfik

(µk≠1
min ) = αfik≠1

(µk≠1
min ). Let dfik

:= ≠(Afik
)≠1πk. By

(6.8), αfik
(⁄) is a linear function of ⁄ whose derivative is (≠1+∆dfik

). In particular,

αfik
(⁄) = αfik≠1

(µk≠1
min ) ≠ (⁄ ≠ µk≠1

min )(1 ≠ ∆dfik
). Thus, –fik

i (⁄) = 0 if and only if

–fik≠1

i (µk≠1
min ) = (⁄ ≠ µk≠1

min )(1 ≠
nÿ

j=2

∆ijdfik

j ). (6.9)

Recall that –fik≠1

i (µk≠1
min ) is non-negative for any active state i œ fik. The value µk

i is

the smallest ⁄ Ø µk≠1
min that satisfies Equation (6.9). There are three cases:

1. if –fik≠1

i (µk≠1
min ) = 0, then µk

i := µk≠1
min ;

2. if –fik≠1

i (µk≠1
min ) > 0 and

a) if 1 ≠ qn
j=2 ∆ijdfik

j > 0, then

µk
i := µk≠1

min +
–fik≠1

i (µk≠1
min )

1 ≠ qn
j=2 ∆ijdfik

j

; (6.10)

b) if 1 ≠ qn
j=2 ∆ijdfik

j Æ 0, then µk
i := +Œ.

This shows that, for a given k, computing µk
min of Line 6 can be done in O(n3): A

first part in O(n3) to compute the inverse of matrix Afi and to compute dfi, plus

some smaller order terms to compute the solutions of (6.9). Similarly, the test in
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Line 7 of Algorithm 2 can also be implemented in O(n3) by using αfik
(µk

min) =

αfik≠1
(µk≠1

min ) ≠ (µk
min ≠ µk≠1

min )(1≠∆dfik
) with the convention that when µk

min = +Œ,

+Œ ◊ 0 = 0 and +Œ ◊ x = sign(x)Œ for any x ”= 0.

This leads to an overall complexity of O(n4) for Algorithm 2 that contains n loops

each having a O(n3) complexity. If at some iteration k the matrix Afik
is not

invertible, then Lemma 6.6 implies that fik is multichain. In consequence, the

algorithm outputs multichain and stops. We integrate this in the newer version of

our algorithm below.

6.5 The (2/3)n3 + o(n3) algorithm

This section describes a way to implement Algorithm 2 efficiently using O(n3)

operations. The main idea is to use the Sherman-Morrison formula to compute in

O(n2) the active advantage vector αfik
(⁄) associated to fik from the one associated

to fik≠1. This leads to a O(n3) algorithm. Once this main idea is in place, we

show how to avoid unnecessary computations to obtain an algorithm that performs

(2/3)n3 + o(n3) arithmetic operations.

6.5.1 Additional notations

In order to obtain a more efficient and compact algorithm, for an iteration k and a

state i, we define yk
i :=

qn
j=2 ∆ijdfik

j and zk
i := –fik

i (µk
min), where dfik

j , ∆ij and –fik

i

are as in (6.10). Equation (6.10) can be rewritten as

µk
i = µk≠1

min +
zk≠1

i

1 ≠ yk
i

. (6.11)

The above equation can be used to compute µk
i and µk

min easily from yk
i and zk≠1

i .

Indeed, from the previous section, we have –fik

i (µk
min) = –fik≠1

i (µk≠1
min ) ≠ (µk

min ≠
µk≠1

min )(1 ≠ qn
j=2 ∆ijdfik

j ), which translates into

zk
i = zk≠1

i ≠ (µk
min ≠ µk≠1

min )(1 ≠ yk
i ). (6.12)

This shows that the critical values to compute are the variables yk
i . In the remainder

of this section, we show that the quantity yk
i can be computed efficiently by a

recursive formula.
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6.5.2 Application of the Sherman-Morrison formula

To compute yk+1
i :=

qn
j=2 ∆ijdfik+1

j , we need to compute the quantities dfik+1
:=

≠(Afik+1
)≠1πk+1. This requires the inverse of Afik+1

. By definition of fik, two

policies fik and fik+1 differ by exactly one state: πk+1 = πk ≠ e‡k where ej denotes

the column vector with a 1 in jth coordinate and 0’s elsewhere. Also, by definition

of Afi in (6.7), the two matrices Afik
and Afik+1

differ only at the row ‡k:

Afik+1
= Afik

+ e‡k∆‡k (6.13)

where ∆‡k is a row vector defined as in the previous section.

One can efficiently compute the inverse of matrix Afik+1
from the one of Afik

by

using the Sherman-Morrison formula, which says that if A œ R
n◊n is an invertible

square matrix and p, q œ R
n are two column vectors, then the matrix A + pq€ is

invertible if and only if 1 + q€A≠1p ”= 0 and if A + pq€ is invertible, then:

(A + pq€)≠1 = A≠1 ≠ A≠1pq€A≠1

1 + q€A≠1p
.

Let Xk
ij := ∆i(A

fik
)≠1ej . Following (6.13), we can apply the Sherman-Morrison

formula with matrix Afik
, and vectors p = e‡k and q€ = ∆‡k . After some simplifi-

cation, we get:

Xk+1
ij := ∆i(A

fik+1
)≠1ej = ∆i(A

fik
+ e‡k∆‡k)≠1ej

= Xk
ij ≠ Xk

i‡k

1 + Xk
‡k‡k

Xk
‡kj (6.14)

In particular, Xk+1
i‡k =

Xk
i‡k

1 + Xk
‡k‡k

.

Before computing Xk+1
ij , we need to verify that fik+1 is unichain. With the help of

Lemma 6.6 and the Sherman-Morrison formula, this can be done easily: fik+1 is

unichain if and only if 1 + Xk
‡k‡k ”= 0.
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For yk+1
i := ∆id

fik+1
= ≠∆i(A

fik+1
)≠1πk+1, we use πk+1 = πk ≠ e‡k and apply the

Sherman-Morrison formula to get:

yk+1
i = ≠∆i(A

fik
+ e‡k∆‡k)≠1(πk ≠ e‡k)

= ≠∆i(A
fik

)≠1(πk ≠ e‡k) +
∆i(A

fik
)≠1e‡k∆‡k(Afik

)≠1

1 + ∆‡k(Afik)≠1e‡k

(πk ≠ e‡k)

= yk
i + Xk

i‡k +
Xk

i‡k(≠yk
‡k ≠ Xk

‡k‡k)

1 + Xk
‡k‡k

= yk
i +

Xk
i‡k(1 ≠ yk

‡k)

1 + Xk
‡k‡k

= yk
i + (1 ≠ yk

‡k)Xk+1
i‡k (6.15)

The above formula indicate how to compute yk+1 from yk. To complete this analysis,

let us show that y1 = 0. For a given policy fi, the vector dfi satisfies the same

equation as Equation (6.6) but replacing rfii
i ≠ ⁄fii by ≠fii. This implies that for π =

π1 = [1 . . . 1]€, one has dfi = [≠1 0 . . . 0]€ as dfi
1 is the long-term average reward

of a Markov reward process whose reward is negative one in all states and dfi
2 , . . . , dfi

n

is the bias of this process. This shows that for all i, one has y1
i :=

qn
j=2 ∆ijdfi1

j = 0.

Moreover, by (6.8), one has

α
fi1

(⁄) = δ ≠ ⁄1 + ∆(Afi1
)≠1rfi1 ≠ ⁄∆(Afi1

)≠1
π

1

¸ ˚˙ ˝

=:y1

= δ ≠ ⁄1 + ∆(Afi1
)≠1rfi1

. (6.16)

Finally, for πn+1 = [0 . . . 0]€, one has

α
fin+1

(⁄) = δ ≠ ⁄1 + ∆(Afin+1
)≠1rfin+1

. (6.17)

6.5.3 Detailed algorithm

Equation (6.11) shows how to compute µk
i from the values of yk

i and zk≠1
i while

(6.15), (6.14) and (6.12) show how to compute the values of y, z and X recursively

in k. In order to compute µk
min and ‡k, one only needs to compute the values µk

i

for i œ fik. Once µk
min = miniœfik µk

i is determined, if µk≠1
min < µk

min, then Line 7 of

Algorithm 2 can be performed, based on (6.12), by checking if zk
i Ø 0 for some

i œ [n] \ fik.

This leads to Algorithm 3 that can be decomposed as follows:
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Algorithm 3: Test indexability and compute Whittle indices (if indexable).

Input :n-state arm È[n], {0, 1}, {r0, r1}, {P 0,P 1}Í
1 Init.

2 Set fi1 := [n], k0 = 1, ∆i1 := 0, ∆ij := P 1
ij ≠ P 0

ij , ’i œ [n], j œ {2, . . . , n},

y1 = 000 and Afi1
is defined by (6.7).

3 if fi1 is multichain then return the arm is multichain.
4 Set X1 := ∆(Afi1

)≠1

5 Set µ1 := r1 ≠ r0 + X1r1

6 Let ‡1 := arg miniœfi1 µ1
i , ⁄‡1 = µ1

min := µ1
‡1 , and fi2 := fi1 \ {‡1}

7 Set z1 = µ1 ≠ µ1
min1

8 for k = 2 to n do

9 Update_X(k ≠ 1) // Here we call Subroutine 4 or Subroutine 5

10 Set yk = yk≠1 + (1 ≠ yk≠1
‡k≠1)Xk

:‡k≠1

11 for i œ fik do

12 Set µk
i :=

Y

____]

____[

µk≠1
min , if zk≠1

i = 0

µk≠1
min +

zk≠1
i

1≠yk
i

, if zk≠1
i >0 and 1≠yk

i >0

+Œ, otherwise
13 Let ‡k := arg miniœfik µk

i and µk
min := µk

‡k

14 Set zk = zk≠1 ≠ (µk
min ≠ µk≠1

min )(1 ≠ yk)

15 if µk≠1
min < µk

min and zk
i Ø 0 for some i œ [n] \ fik then

16 return the arm is not indexable
17 if µk

min = +Œ then

18 Set ⁄i := +Œ for all i œ fik

19 return the arm is indexable and the indices are {⁄i}iœ[n].
20 Set ⁄‡k = µk

min and fik+1 := fik \ {‡k}

21 if fin+1 is multichain then return the arm is multichain
22 return the arm is indexable and the indices are {⁄i}iœ[n].
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Subroutine 4: Update_X(k)

1 for ¸ = 1 to k ≠ 1 do

2 for i œ [n] do // or i œ fi¸+1 if we do not test indexability.

3 X¸+1
i‡k = X¸

i‡k ≠ X¸+1
i‡¸ X¸

‡¸‡k

4 if 1 + Xk
‡k‡k = 0 then

5 return the arm is multichain
6 for i œ [n] do // or i œ fik+1 if we do not test indexability.

7 Xk+1
i‡k =

Xk
i‡k

1 + Xk
‡k‡k

1. In Lines 2 to 7, we initialize the various variables. The main complexity of

this part is to compute the matrix X1, which is equivalent to solving the

linear system XAfi1
= ∆. It can be done by inverting the matrix Afi1

and

multiplying this by the matrix ∆. This can be done in a subcubic complexity

by using for instance Strassen’s algorithm [Str69].

2. We then enter the main loop:

• We update the vectors µ, z by using Equations (6.11) and (6.12), and

test indexability. This costs O(n) operations per iteration, thus O(n2) in

total.

• We update the vector X according to (6.14). The “naive” way to do so is

to use Subroutine 4. At iteration k this costs 2kn arithmetic operations if

we test indexability, and 2
qk

l=1(n ≠ l) if we do not test indexability. The

total complexity of computing X is n3 + O(n2) arithmetic operations if

we test indexability and (2/3)n3 + O(n2) if we do not. A detailed study

of the arithmetic complexity is provided in Appendix 6.A, where we also

provide details on how to efficiently implement the algorithm, including

how to optimize the cost of memory access.

• In Line 10, we update the vector y by using Equation (6.15), which costs

O(n) per iteration.

3. Testing if fin+1 is unichain can be done in O(n2) by Tarjan’s strongly connected

component algorithm.

Hence, the total complexity of this algorithm is n3 + o(n3) if we test indexability

and (2/3)n3 + o(n3) if we do not test indexability. Without testing the indexability,

our algorithm has the same main complexity as [Niñ20]. However, the algorithm

of [Niñ20] computes Whittle index only for an arm that is PCL-indexable. Hence,

we can claim that our algorithm is the first algorithm that computes Whittle index

84 Chapter 6 Testing Indexability and Computing Whittle and Gittins Index in

Subcubic Time



with (2/3)n3 main complexity for all indexable undiscounted restless arms. It is also

the first algorithm with cubic complexity that detects non-indexability of restless

bandits. Note that the ties are broken arbitrarily for Lines 6 and 13.

Remark: Equivalently, instead of calling Subroutine 4 at Line 9, one could do

the following update for all j œ fik+1 and i œ [n] (or i œ fik+1 if we do not test

indexability):

Xk+1
ij = Xk

ij ≠ Xk
i‡k

1 + Xk
‡k‡k

Xk
‡kj . (6.18)

This iterative update is very close to the one used in [AM20; Niñ20] for discounted

restless bandit. This results in an algorithm that has the same total complexity as

Subroutine 4 (of n3 + O(n2) or (2/3)n3 + O(n2) with or without the indexability

test) because both algorithms will have computed the same values of Xk
ij . The

reason to use Subroutine 4 is that, as we will see in the next section, not all values

of Xk
ij are needed at iteration k: in particular, for ¸ < k, the computation of the

value X¸
i‡k≠1 has no interest per se and is only useful because it allows to recursively

compute Xk
i‡k≠1 . In the section below, we show how to reduce the cost by avoiding

the computation of X¸
i‡k≠1 when ¸ is much smaller than k. We comment more on

the differences with [AM20; Niñ20] in Section 6.9 and in particular we explain why

our approach can be tuned into a subcubic algorithm while (6.18) cannot.

6.6 The subcubic algorithm

6.6.1 Main idea: recomputing Xk from Afik

periodically

The main computational burden of Algorithm 3 is concentrated on two lines: on

Line 4 where we compute X1 by solving a linear system, and on Line 9 where

we compute the column vector Xk
:‡k≠1 from X1

:‡k≠1 . The remainder of the code

runs in O(n2) operations and is therefore negligible for large matrices. In fact, the

computation of X1 is done by solving a linear system, which can be computed by

using a subcubic algorithm (like Strassen [Str69]). In this section, we show how to

optimize our algorithm by reducing the complexity of the update_X() function, at

the price of recomputing the full matrix Xk0 from Afik0 periodically.
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At iteration k of Algorithm 3, the quantities Xk
i‡k≠1 are used at Line 10 to obtain

the values yk
i . The matrix Xk is defined as Xk := ∆(Afik

)≠1. It also satisfies

Equation (6.14), that is, for an iteration ¸ and states i and j, we have:

X¸+1
ij = X¸

ij ≠ X¸+1
i‡¸ X¸

‡¸j . (6.19)

The way Subroutine 4 is implemented is to initialize X1 := ∆(Afi1
)≠1 and then

use (6.19) recursively to compute the column vector Xk
:‡k≠1 from X1

:‡k≠1 at each

iteration.

Here, we propose an alternative formulation which consists in recomputing the whole

matrix Xk := ∆(Afik
)≠1 every K iterations. In the meantime, we use (6.19) to

compute the values X¸
i‡k≠1 for ¸ œ {k0 + 1, . . . , k} where k0 is the iteration at which

we recomputed the whole matrix Xk0 := ∆(Afik0 )≠1. This can be implemented by

replacing the call to Subroutine 4 at Line 9 with a call to Subroutine 5.

Subroutine 5: Update_X_FMM(k)

1 if k is an iteration at which we recompute the whole Xk+1 then

2 Set k0 := k + 1;
3 if fik0 is multichain then

4 return the arm is multichain

5 Set Xk0 := ∆(Afik0 )≠1

6 else

7 for ¸ = k0 to k ≠ 1 do

8 for i œ [n] do // or i œ fi¸+1 if we do not test indexability.

9 X¸+1
i‡k = X¸

i‡k ≠ X¸+1
i‡¸ X¸

‡¸‡k

10 if 1 + Xk
‡k‡k = 0 then

11 return the arm is multichain
12 for i œ [n] do // or i œ fik+1 if we do not test indexability.

13 Xk+1
i‡k =

Xk
i‡k

1 + Xk
‡k‡k

To see why this can be more efficient, we illustrate in Figure 6.7 the pairs (¸, ‡k≠1)

for which we compute the vector X¸
:‡k≠1 , either for Subroutine 4 or Subroutine 5.

In each case, a vertical blue line indicates that we recompute the whole matrix Xk

by solving a linear system. The gray zone corresponds to the values (¸, ‡k≠1) for

which we compute X¸
:‡k≠1 using Equation (6.19), and the red squares represent the

vector Xk
:‡k≠1 used at Line 10 of Algorithm 3. For Subroutine 4, we do one matrix

inversion at the beginning and then compute for all (¸, ‡k≠1) with ¸ Æ k because

the red square at value (k, ‡k≠1) is computed starting from the vertical blue line at

value (1, ‡k≠1). For Subroutine 5, we do Ân/KÊ (here Ân/KÊ = 4) full recalculation
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of Xk, which correspond to the vertical blue lines. We gain in terms of operations

because the surface of the gray zone to compute is divided by Ân/KÊ.

¸

‡k

¸

‡k

K

K

‡K

‡2K

...

(a) Computation load of Subroutine 4. (b) Computation load of Subroutine 5

Figure 6.7.: Illustration of the improvement proposed by replacing Subroutine 4 with
Subroutine 5 when we do not test the indexability. For Subroutine 5, we solve
more linear systems (each vertical blue line corresponds to solving a linear
system) but we reduce the gray zone to compute. A linear arrow corresponds
to the internal loop of Line 7 of Subroutine 5.

Note that the y-axis of Figure 6.7 is ordered by increasing value of ‡k (and not by

increasing value of k). The value of ‡k is computed at iteration k but unknown

before iteration k. This explains why in Subroutine 5, when we recompute the

matrix (Xk
ij) at an iteration k (vertical blue lines in Figure 6.7(b)), we recompute it

for all i, j and not just i, j œ {‡k, . . . , ‡K} (which are the only values that we will

use): Indeed, ‡k, . . . , ‡K are unknown at iteration k.

6.6.2 A subcubic algorithm for Whittle index

We now assume to have access to a subcubic matrix multiplication algorithm that

satisfies the following property:

(FMM) There exists an algorithm to multiply a matrix of size n ◊ n by a matrix of

size2 n ◊ nÍ that runs in O(nÊ(Í)), where Ê : [0, 1] æ [2, 3] is a non-decreasing

function.

Going back to Algorithm 3 where Line 9 is Subroutine 5, we now assume that we

recompute the whole matrix Xk every O(nÍ) iterations. The new algorithm has a

subcubic complexity:

2We write nÍ which is possibly non-integer. For the sake of simplicity, we write nÍ and n1≠Í but they
should be understood as ÂnÍÊ and

%
n1≠Í

&
respectively.
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Theorem 6.7 (Subcubic algorithm)

Given an n-state arm, Algorithm 3 with Subroutine 5 checks indexability and

computes Whittle (and Gittins) index in time at least Ω(n2.5) and at most

O(n2.5286) when choosing Í = 0.5286.

We believe that Theorem 6.7 is the first theoretical result that shows that Whittle

index can be computed in subcubic time. As we show in Section 6.8, this algorithm

can be directly extended to discounted index. As a byproduct, we also obtain the

first subcubic algorithm to compute Gittins index.

Proof. The algorithm starts by computing X1 which can be done in O(nÊ(1)). Then,

there are n1≠Í times that we do:

1. We fill the “gray” mini matrices by using (6.19). This amounts to three for

loops of size n (for i), nÍ (for k) and nÍ (for ¸). Hence, each small gray

matrix costs O(n1+2Í).

2. At the end of a cycle, we recompute the full inverse by updating (Afik
)≠1 from

(Afik≠nÍ

)≠1. As we show in Lemma 6.8 (stated below), this can be done in

O(nÊ(Í)).

This implies that the algorithm has a complexity:

O(nÊ(Í)) + n1≠Í
1

O(n1+2Í) + O(nÊ(Í))
2

= O(nmax{2+Í,1≠Í+Ê(Í)}).

To compute the optimal value of Í minimizing this expression requires the knowledge

of the function Ê(Í) which is not known. The current state of the art only gives a

lower bound (Ê(Í) Ø 2 ) and an upper bound described in [GU18].

It is shown in [GU18, Table 3] that Í = 0.5286 is the smallest currently known value

of Í for which Ê(Í) < 1 + 2Í. This implies that the complexity is at most O(n2.5286).

As for the lower bound, Ê(Í) Ø 2 implies that the complexity of the algorithm is at

least Ω(n2.5).

In the next lemma, B plays the role of Afik
and A the role of Afik≠nÍ

. Note that as

required in the lemma, exactly nÍ rows and columns are changed between the two

matrices.
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Lemma 6.8 (Fast matrix inversion)

Assume (FMM). Let A be a square matrix whose inverse A≠1 has already been

computed, and let B be an invertible square matrix such that A ≠ B is of rank

smaller than nÍ. Then, it is possible to compute the inverse of B in O(nÊ(Í)).

Proof. The matrix B can be written as B = A+UCV where U is an n ◊ nÍ matrix,

C is nÍ ◊ nÍ and V is nÍ ◊ n. The Sherman–Morrison–Woodbury formula [Woo50]

states that

B≠1 = (A + UCV )≠1 = A≠1 ≠ A≠1U
1

C≠1 + V A≠1U
2≠1

V A≠1.

This shows that B≠1 can be computed by:

• Computing D := A≠1U and E := V A≠1: this takes O(nÊ(Í)).

• Computing F :=
!
C≠1 + V A≠1U

"≠1: as this is the inversion of an nÍ ◊ nÍ

matrix, it can be done in O(nÍÊ(1)) where ÍÊ(1) Æ Ê(Í).

• Computing G := DF and then GE: this again takes O(nÊ(Í)).

Hence, computing B≠1 can be done in O(nÊ(Í)) operations for the inversion and all

multiplications plus an additional O(n2) term for the subtraction and the addition.

As Ê(Í) Ø 2, this concludes the proof of the lemma.

6.6.3 The subcubic algorithm in practice

The complexity of O(n2.5286) given in Theorem 6.7 is mainly of theoretical interest.

The value Í = 0.5286 is obtained by using the best upper bound on Ê(Í) known

today which is based on the Coppersmith-Winograd algorithm and its variants.

The Coppersmith-Winograd algorithm (or its variants) are, however, known as a

galactic algorithm: the hidden constant in the O() is so large that their runtime is

prohibitive for any reasonable value of n. Hence, the existence of these algorithms

is of theoretical interest but has limited applicability.

This does not discard the practical improvement provided by Subroutine 5 which

is based on the mere fact that multiplying two matrices (or inverting a matrix) is

faster than three nested loops even for matrices of moderate size. To verify this, we

launched a detailed profiling of the code of Algorithm 3 with the non-optimized

Subroutine 4. It shows that for a problem of dimensions 5000, the update of Line 9

takes more than 90% of the computation time, the initialization of X1 on Line 4
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takes about 5% of the time and the rest of the code takes less than 1% of the running

time.

Now, if inverting the full matrix takes about 5% of the execution time, and updating

the gray zone takes 95%, then by doing 5 updates, one can hope to obtain an

algorithm whose running time is roughly 5 ◊ 5 + 95/5 ¥ 43% of the running time

of the original implementation. As we observe in Section 6.7, this is close to the

gain that we obtain in practice. A general way to choose the best number of updates

is used in the numerical section. It is based on the following reasoning. For large

matrices (say n Ø 103), the fastest implementations of matrix multiplication and

inversion are based on Strassen’s algorithm [Hua+16; Hua18]. As we report in

Appendix 6.A.1, the time to solve a linear system of size n by using the default

installation of scipy seems to run in O(n2.8). By replacing the function Ê(Í) used in

Theorem 6.7 by a more practical bound (Ê(Í) = 2.8), the best value for Í becomes

Í = 0.9. This indicates that our algorithm can be implemented in O(n2.9) by doing

O(n0.1) recalculation of Xk from Afik
. Note that even for very large values of n (like

n = 15000), n0.1 remains quite small, e.g., 150000.1 ¥ 2.6. In practice, we observe

that updating int(2n0.1) times (the notation int(x) indicates that it is rounded to the

closest integer) gives the best performance among all algorithms, as reported in the

next section.

6.7 Numerical experiments

In complement to our theoretical analysis, we developed a python package that

implements Algorithm 3 and gives the choice of using the variant of Subroutine 4 or

of Subroutine 5 to do the “update_X()” function. This package relies on three python

libraries: scipy and numpy for matrix operations, and Numba to compile the python

code. To facilitate its usage, this package can be installed by using pip install

markovianbandit-pkg.

All experiments were conducted on a laptop (Macbook Pro 2020) with an Intel

Core i9 CPU at 2.3 GHz with 16GB of Memory using Python 3.6.9 :: Anaconda

custom (64-bit) under macOS Big Sur version 11.6.2. The version of the packages

are scipy version 1.5.4, numpy version 1.19.5 and Numba version 0.53.1. The code

of all experiments is available at https://gitlab.inria.fr/markovianbandit/ef

ficient-whittle-index-computation.
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In all of our experiments, the way we generated arms guarantees that they are

almost surely unichain because all the elements on their diagonal as well as on the

upper and lower diagonals are positive.

6.7.1 Time to compute Whittle indices

To test the implementation of our algorithm, we randomly generate restless bandit

arms with n states where n œ {100, 1000, . . . , 15000}. In each case, both transition

matrices are uniform probabilistic matrices: for each row of each matrix, we generate

n i.i.d. entries following the exponential distribution and divide the row by its sum.

This means that all matrices are dense. We use dense matrix since it is the worst

case for computational interest. By running our algorithms on sparse matrix, we

would expect to have faster running time. Note that all tested matrices are indexable.

This is coherent with [GGY20; Niñ07b] that report that for uniform matrices, the

probability of finding a non-indexable example decreases very rapidly with the

dimension n. Finally, reward vectors were generated from random Uniform[0,1)

entries.

Table 6.1.: Running time (in seconds) of the variants of Algorithm 3

O(n3) algorithm (Subroutine 4) Subcubic algorithm (Subroutine 5)
n (a) With index. test (b) Without test (c) With index. test (d) Without test

100 0.006 0.004 0.007 0.005
1000 0.2 0.2 0.2 0.2
2000 1.9 1.2 1.1 1.0
3000 7.2 5.0 3.2 2.6
4000 17 12 8 6
5000 34 25 16 12
6000 60 43 27 20
7000 95 68 42 33
8000 142 99 63 49
9000 199 141 92 70

10000 275 191 122 95
11000 361 257 164 133
12000 471 339 225 190
13000 620 428 286 243
14000 790 553 408 317
15000 965 685 501 403

We record the runtime of the different variants of our algorithm and report the

results in Table 6.1. Note that these results present the whole execution time of the
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algorithm, including the initialization phase in which X1 is computed. For each

value of n, we run Algorithm 3 with four variants:

• The first two columns correspond to the O(n3) algorithm (that uses Subrou-

tine 4 for Line 9), either (a) with the indexability test, or (b) without the

indexability test.

• The last two columns correspond to the subcubic algorithm (that uses Subrou-

tine 5 for Line 9 with int(2n0.1) updates), either (c) with the indexability test,

or (d) without the indexability test.

Our numbers show that our algorithm can compute the Whittle index in less than

one second for n = 1000 states and slightly less than 7 minutes for n = 15000 states

with variant (d). As expected, not doing the indexability test does improve the

performance compared to doing the indexability test (here by a factor approximately

1/3 for Subroutine 4 and 1/5 for Subroutine 5). More importantly, this table

shows that the time when using the subcubic variant, Subroutine 5, diminishes the

computation time by about 40% to 50% compared to when using Subroutine 4. Note

that for n = 100, using the Subroutine 4 is slightly faster than using the Subroutine 5

(while both takes only a few milliseconds). This indicates that the subcubic algorithm

becomes interesting when n is large enough (say n Ø 2000).

To give a visual idea of how the various variants of the algorithm compare, we plot in

Figure 6.8a the runtime of the four variants along with two variants of the algorithms

of [Niñ20]: FPA-Matlab (the original matlab implementation), and FPA-Julia (a Julia

implementation provided by the authors). We choose to compare to this algorithm as

it was the one with the smallest complexity up to now. The numbers for FPA-Matlab

are extracted in [Niñ20]. They are comparable to the numbers that we obtained

on our machine when using the same algorithm. FPA-Julia is significantly faster.

Hence, we plot in Figure 6.8b the runtime of each variant divided by the runtime

of FPA-Julia. For large n, our best implementation is about 4 to 6 times faster than

the best one of [Niñ20]. For instance, for n = 15000, our implementation takes

about 7 minutes to compute the index (or 9 minutes when checking indexability)

whereas FPA-Julia takes 33 minutes (and does not check indexability on the fly).

In our implementation, not testing indexability reduces the computation time of

15 ≠ 20% for Subroutine 5 or 25 ≠ 30% for Subroutine 4 compared to the version

that tests indexability.

It should be clear that the comparison between our implementation and FPA-Matlab

or FPA-Julia has its limits. First, we do not use the same programming language

since our code uses Python with Numba. To obtain a fairer comparison, we tried to
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rewrite the algorithm of [Niñ20] in Python with Numba, but our implementation was

significantly slower than the one of FPA-Julia. Second, while the two algorithms are

similar, our algorithm has some technical advantage (a simpler internal loop, the

use of Subroutine 5), and our implementation is optimized for better data locality

(see Appendix 6.A.2).
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Figure 6.8.: Numerical result over 7 simulations: in each simulation, we run the al-
gorithm over randomly generated RBs with the state size ranging over
{1000, . . . , 15000}. We plot the average runtime over 7 simulations. The
solid lines represent the result of Subroutine 4 and the dashed-dot lines repre-
sent the one of Subroutine 5. The marker “+” indicates that algorithms test
indexability and the triangles indicates that algorithms do not test indexability.

6.7.2 Statistics of indexable problems

To the best of our knowledge, our algorithm provides the first indexability test that

scales well with the dimension n. We used this to answer a very natural question:

given a randomly generated arm, how likely is it to be indexable? This question was

partially answered in [Niñ07b] that shows that when generating dense arms, the

probability of generating a non-indexable arm is close to 10≠n for n œ {3, . . . , 7}.

This suggests that most arms are indexable. Below, we answer two questions: what

happens for larger values of n, and more importantly, what happens when the state

transition matrices are not dense?

To answer these questions, we consider randomly generated arms where the matrices

P 0 and P 1 are b-diagonal matrices with b non-null diagonals. In particular, b = 3

corresponds to tridiagonal matrices, b = 5 corresponds to pentadiagonal matrices

and b = 7 corresponds to septadiagonal matrices. We also compare with the classical
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case of dense matrices (which corresponds to b = 2n ≠ 1). For each model, the

entries are generated from the exponential distribution for each row, and we divide

the row by the sum of generated entries for this row. We vary n from 3 to 50 and for

each case, we generate 100000 arms. We report in Table 6.2 the number of indexable

arms for each case. Note that pentadiagonal matrices are dense matrices for n = 3

and septadiagonal matrices are dense matrices for n = 4 and do not make sense for

n = 3, which is why no numbers are reported.

Table 6.2.: Number of indexable problems among 100 000 randomly generated problems.

Problem size n Tridiagonal 5-diagonal 7-diagonal Dense
3 98 731 – – 99 883
4 95 067 99 655 – 99 931
5 89 198 99 309 99 902 99 969
10 54 129 90 377 98 914 100 000
30 7 094 29 699 66 143 100 000
50 1 823 9 332 32 069 100 000

Based on these results, we can assert that dense models are essentially always index-

able which conforms with the data reported in [Niñ07b]. The situation is, however,

radically different for sparse models: the number of indexable problems decreases

quickly with the number of states. For instance, there are only 1 823 indexable

50-state problems among 100 000 generated tridiagonal models (i.e. around 1.8%

are indexable). Note that a tridiagonal model is a birth-death Markov chain which

is frequently used for queuing systems. Hence, it is very important to check the

indexability of the problem because it is not a prevalent property for sparse models.

This also calls for new efficient policies in restless multi-arm bandit problems that

are not based on Whittle indices.

6.8 Extension to the discounted case

Whittle index is also defined for the discounted case [Niñ20; AM20]. Notably, the

discounted Whittle index simplifies into Gittins index when the bandit is rested (i.e.,

when P 0 = I and r0 = 0). In this section, we show how to adapt our algorithm

to the discounted case. As a by product, we obtain the first subcubic algorithm to

compute Gittins index rested bandit.
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6.8.1 Discounted Whittle index

We now consider a ⁄-penalized MDP in which the instantaneous reward received

at time t Ø 1 is discounted by a factor “t≠1, where “ œ (0, 1) is called the discount

factor: when executing action a in state i at time t Ø 1, the decision maker earns a

reward “t≠1(ra
i ≠ ⁄a). For a given policy fi, we denote by ufi

i (⁄) the expected sum of

discounted rewards earned by the decision maker when the MDP starts in state i

at time 1. The vector ufi(⁄) = [ufi
1 (⁄) . . . ufi

n(⁄)]€ is called the value function of the

policy fi. From Section 2.3, it satisfies Bellman evaluation equation: for all state i

we have:

ufi
i (⁄) = rfi

i ≠ ⁄fii + “

nÿ

j=1

P fi
ijufi

j (⁄). (6.20)

The above equation is a linear equation, whose solution is unique because “ < 1. It

is given by:

ufi(⁄) = (I ≠ “P fi)≠1(rfi ≠ ⁄π). (6.21)

For a given penalty ⁄ and a state i, we denote by uú
i (⁄) := maxfi ufi

i (⁄) the optimal

value of state i. A policy fi is optimal for the penalty ⁄, i.e., fi œ Π
ú(⁄), if for all

state i œ [n], uú
i (⁄) = ufi

i (⁄). From Section 2.3, such a policy exists, |Πú(⁄)| > 0. As

mentioned in Section 5.4, the distinction between Bellman optimal and gain optimal

disappears in discounted MDP in which we are concerned with maximizing the value

function. Similarly to the average reward criterion studied before, a “-discounted

RB is called indexable if for all penalty ⁄ < ⁄Õ, all fi œ Π
ú(⁄) and fiÕ œ Π

ú(⁄Õ), one

has fi ´ fiÕ.

6.8.2 Analogy between the average reward and the discounted

versions

Let fi be a policy and i œ fi be an active state. Similarly to average reward model

studied before, the advantage of action activate over action rest in state i right before

following policy fi is given by, –fi
i (⁄) := r1

i ≠ r0
i ≠ ⁄ + “

qn
j=1(P 1

ij ≠ P 1
ij)ufi

j (⁄). Then

–fi
i (⁄) = 0 if and only if ⁄ = ”i+

qn
j=1 ∆̃ijufi

j (⁄) where ”i is defined as for the average

reward model and ∆̃ is such that for all3 states i, j œ [n]: ∆̃ij := “(P 1
ij ≠ P 0

ij).

3Note that the definition of ∆̃ is identical to ∆ except when j = 1, for which ∆i1 := 0 but
∆̃i1 := γ(P 1

i1 ≠ P 0
i1).
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To finish the derivation of the algorithm, one should note that the value function

u(⁄) plays the same role as the vector v(⁄) defined for the average reward model.

In particular, the definition of u in Equation (6.21) is the analogue of the definition

of v in (6.8) up to the replacement of the matrix Afi in (6.8) by the matrix I ≠ “P fi.

This means that similarly to v, the value function u(⁄) is affine in ⁄.

Hence, following the same development in Section 6.5, we can modify Algorithm 3 to

compute the discounted Whittle index by modifying only the initialization phase:

∆̃ := “(P 1 ≠ P 0) and X1 := ∆̃(I ≠ “P fi1
)≠1.

Note that we still have y1 = 000 because (I≠“P fi1
)≠1π1 = 1

1≠“
111 (value function in a “-

discounted Markov reward process with reward equals to 1 in all states) and ∆̃111 = 000.

Also, if Subroutine 5 is used, Line 5 should be changed to Xk0 := ∆̃(I ≠ “P fik0 )≠1.

Last but not least, in the discounted case, we no longer needed the optimal policies

to be unichain because the matrix (I ≠ “P fi) is invertible for any policy fi as long as

“ < 1 (from Perron-Frobenius’ Theorem).

6.8.3 Gittins index

The notion of “restless” bandit comes from the fact that even when the action “rest”

is taken, the Markov chain can still change state and generate rewards. When this

is not the case (i.e., when P 0 = I and r0 = 0), an arm is no longer restless and

is simply called a Markovian bandit (or a rested Markovian bandit if one wants to

emphasize that it is not restless).

In a discounted rested bandit, the notion of Whittle index coincides with the notion

of Gittins index (in fact, Whittle index was first introduced as a generalization of

Gittins index to restless bandit in [Whi88]). In such a case, there is no notion

of indexability: a discounted rested bandit is always indexable. Its index can be

computed by Algorithm 3 without testing indexability. The best known algorithms

to compute Gittins index runs in (2/3)n3 + O(n2) [CM14]. When using fast matrix

multiplication, our algorithm computes Gittins index in O(n2.5286) which makes it

the first algorithm to compute Gittins index in subcubic time.

Note that when P 1 = I, it is possible to compute X1 = ∆̃/(1≠“) without having to

solve a linear system which means that, when P 1 = I, our algorithm with the variant

Subroutine 4 has complexity (2/3)n3 + O(n2). This shows that our cubic algorithm

can compute the Gittins index also in (2/3)n3 + O(n2) instead of (2/3)n3 + o(n3).
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6.9 Detailed comparison with [AM20] and [Niñ20]

In this section, we compare our algorithm with two main related works for finite-state

restless bandit problem.

6.9.1 Comparison with [AM20]

The paper presents an algorithm that computes Whittle indices in O(n3) (no explicit

constant before n3 is given) for all indexable problems. Despite following a different

approach, our algorithm for computing Whittle index can be viewed as a refinement

of this work. Let us recall once again that our approach also allows one to check the

indexability of general restless bandits.

In the following, we show how we can refine the work of [AM20] to obtain an

algorithm that is exactly the same as ours. Let Dfi and Nfi be two vectors defined as

in [AM20] (we use the same notation, Dfi and Nfi, as the cited paper),

Dfi = (1 ≠ “)(I ≠ “P fi)≠1rfi, and Nfi = (1 ≠ “)(I ≠ “P fi)≠1
π.

Then, we have Dfi ≠ ⁄Nfi = (1 ≠ “)ufi(⁄) where ufi(⁄) is defined as in (6.21). In

our proposition, at each iteration k, we compute µk
i by Line 12. Instead, it is defined

in [AM20] by two steps:

1. for all state j œ [n] such that N
fik\{i}
j ”=Nfik

j , one computes µk
ij=

D
fik\{i}
j ≠ Dfik

j

N
fik\{i}
j ≠ Nfik

j

2. compute µk
i = arg min

jœ[n]:N
fik\{i}
j ”=Nfik

j

µk
ij .

From [AM20, Theorem 2], in an indexable problem, for state ‡k, there exists a state

j œ [n] such that N
fik\{‡k}
j ”= Nfik

j . Now, suppose that for any active state i œ fik,

there exists j œ [n] such that N
fik\{i}
j ”= Nfik

j . Using the Sherman-Morrison formula,

we have 4

Dfik\{i} ≠ Dfik
= ≠ (1 ≠ “)”i + ∆̃iD

fik

1 + ∆̃i[(I ≠ “P fik)≠1]:i
[(I ≠ “P fik

)≠1]:i,

and Nfik\{i} ≠ Nfik
= ≠ (1 ≠ “) + ∆̃iN

fik

1 + ∆̃i[(I ≠ “P fik)≠1]:i
[(I ≠ “P fik

)≠1]:i.

4the expression of Dfi\{i} and Nfi\{i} given by Equation (19) in [AM20] are erroneous.

6.9 Detailed comparison with [AM20] and [Niñ20] 97



Then, for any j œ [n] such that N
fik\{i}
j ”= Nfik

j , µk
ij =

(1 ≠ “)”i + ∆̃iD
fik

(1 ≠ “) + ∆̃iNfik which

does not depend on j. Then, we simply have µk
i =

(1 ≠ “)”i + ∆̃iD
fik

(1 ≠ “) + ∆̃iNfik . Also, we

have

∆̃iN
fik

= (1 ≠ “)∆̃i(I ≠ “P fik
)≠1

π
k = ≠(1 ≠ “)yk

i and

∆̃iD
fik

= (1 ≠ “)∆̃iu
fik

(µk≠1
min ) + µk≠1

min ∆̃iN
fik

= (1 ≠ “)zk≠1
i ≠ (1 ≠ “)µk≠1

min yk
i .

So, replacing these terms in µk
i , we get the formula in Equation (6.11) of our work.

Note that the algorithm of [AM20] was only developed for the discounted case.

Our approach for the average reward case is different because we use the active

advantage function defined in (6.1) instead of working with the expected discounted

total reward Dfik
and total number of activations Nfik

under policy fik. Note that

the counterpart of Dfik
in average reward criterion is the average reward gfik

and as

we have seen in the previous chapter, utilizing gain optimality is not rich enough

for MDPs with transient states. In addition, our code is also optimized to avoid

unnecessary computation and to reduce memory usage. Finally, the way we do the

update of our matrix X makes it possible to obtain a subcubic algorithm whereas

their approach does not (see also below).

6.9.2 Comparison with the algorithm of [Niñ20]

The algorithm [Niñ20] has the best complexity up to date for discounted restless

bandit. There is a square matrix A that plays a similar role as the square matrix X

in our proposed algorithm. The most costly operations in the algorithm of [Niñ20]

is to update their matrix A at each iteration, and it is done by Equation (6.18) that

we recall here (using the same notation A as the cited paper):

for i, j œ fik, Ak+1
ij = Ak

ij ≠ Ak
i‡k

Ak
‡k‡k

Ak
‡kj . (6.22)

This incurs a total complexity of (2/3)n3+O(n2) arithmetic operations. As mentioned

in Section 6.5.3, if we updated Xk+1 as given by (6.18), our algorithm would also

have a (2/3)n3 + O(n2) complexity, but this version of update cannot be optimized

by using fast matrix multiplication.
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6.9.3 Their approach cannot be directly transformed into a subcubic

algorithm

In addition to all the previously cited differences, one of the major contribution of

our algorithm with respect to [AM20; Niñ20] is that the most advanced version of

our algorithm runs in a subcubic time. The approach5 used in [AM20; Niñ20] is to

update the full matrix Xk+1 at iteration k, by using (6.22). This idea is represented

in Figure 6.9(a): for a given ¸, their algorithm compute X¸
:‡k for all k (i.e., the

full vertical lines represented by arrows). Our first Subroutine 4 uses a horizontal

approach based on (6.19), which we recall here:

X¸+1
i‡k = X¸

i‡k ≠ X¸+1
i‡¸ X¸

‡¸‡k .

At iteration k + 1, we use X1
:‡k to compute all values of X¸

:‡k up to ¸ = k + 1.

This is represented in Figure 6.9(b). Our approach can be used to obtain the

subcubic algorithm illustrated in Figure 6.9(c) by using subcubic algorithms for

multiplication.

¸

‡k

¸

‡k

¸

‡k

K

K

‡K

‡2K

...

(a) [AM20; Niñ20] use (6.22). (b) Subroutine 4. (c) Subroutine 5.

Figure 6.9.: Comparison of the computation load of (6.22) used in [AM20; Niñ20] with
the one of Subroutine 4 and Subroutine 5.

This leads to the next fundamental question: why should the computation of Whittle

index be harder than matrix inversion (or multiplication)? To us, the main difference

is that when computing Whittle indices, the permutation ‡ is not known a priori

but discovered as the algorithm progresses: ‡k is only known at iteration k. Hence,

while all terms of the matrices Xk
ij are not needed, it is difficult to know a priori

which ones are needed and which ones are not. Hence, a simple divide and conquer

algorithm cannot be used. This is why when recomputing Xk+1 in Subroutine 5, we

recompute the whole matrix (the vertical blue line) and not just the part that will be

used to compute the gray zone: we do not know a priori what part of Xk+1
ij will be

useful or not.
5Equation (18) of [AM20], which is central to their algorithm is the same as the above equation

(6.22).
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6.10 Conclusion

In this chapter, we presented an algorithm that was efficient for detecting the non-

indexability and computing the Whittle index of all indexable finite-state restless

bandits whose arms are unichain. Without any assumption on the arm’s structure,

this algorithm can still test indexability and compute Whittle index of some arms

that are multichain and remains efficient if it is able to do so. Our algorithm is

based on the efficient application of the Sherman-Morrison formula. This is a unified

algorithm that works for both discounted and average reward criteria, and can be

used for Gittins index computation. We presented the first version of our algorithm

that runs in n3 + o(n3) arithmetic operations (or in (2/3)n3 + o(n3) if we do not

test indexability). So, we conclude that Whittle index is not harder to compute

than Gittins index. The second version of our algorithm uses the fastest matrix

multiplication method and has a theoretical complexity of O(n2.5286). This makes it

the first subcubic algorithm to compute Whittle index or Gittins index. We provided

numerical simulations that show that our algorithm is very efficient in practice: it

can test indexability and compute the index of an n-state restless bandit arm in less

than one second for n = 1000, and in a few minutes for n = 15000. These numbers

are provided for dense matrices. One might expect to have more efficient algorithms

if the arm has a sparse structure. We leave this question for future work.
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Appendix of the chapter

6.A Implementations

6.A.1 Analysis of the experimental time to solve a linear system

In this section, we report in Figure 6.10 the time taken by the default implementation

to solve a linear system of the form AX = B where A and B are two square

matrices. To obtain this figure, we generated random (full) matrices where each

entry is between 0 and 1 and use the function scipy.linalg.solve from the

library scipy. The reported numbers suggest that the complexity of the solver

is closer to O(n2.8) than to O(n3), although we agree that the difference between

the O(n2.8) and the O(n3) curves is small. Note that this is in accordance with the

papers [Hua+16; Hua18] that claim that the fastest implementations of matrix

multiplication and inversion are based on Strassen’s algorithm and should therefore

be in O(n2.8).

n Time (in second)
1000 0.03 ± 0.02
2000 0.24 ± 0.01
4000 1.83 ± 0.05
5000 3.6 ± 0.3
7000 8.7 ± 0.5

10000 23.7 ± 0.6
13000 54.0 ± 2.5
15000 80.8 ± 1.8

Figure 6.10.: Time taken of the default implementations scipy.linalg.solve of scipy to
solve a linear system AX = B where A and B are two square n◊n matrices.

6.A.2 Arithmetic complexity of Subroutine 4 and memory usage

Recall that in Subroutine 4, we compute the values X¸
ij by doing the update (for

all iteration k, for all ¸ = 1 to k and for all i œ [n] or all i œ fi¸+1 if we do not test

indexability):

X¸+1
i‡k = X¸

i‡k ≠ X¸
i‡¸

1 + X¸
‡¸‡¸

X¸
‡¸‡k (6.23)
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If we test indexability, there are
qn

k=1 kn = n3/2 + O(n2) such updates. If we do not

test indexability, there are
qn

k=1

qk
¸=1(n ≠ ¸) = n3/3 + O(n2) such updates. Below,

we show each update of Equation (6.23) can be done in two arithmetic operations

(one addition and one multiplication), which leads to the complexity of n3 + O(n2)

(or (2/3)n3 + O(n2)) arithmetic operations for the computation of all the needed

Xk
ij . We also show how to reduce the memory size to O(n2).

Let Wi¸ := X¸
i‡¸/(1 + X¸

‡¸‡¸) and Vi := X¸
i‡k . Using this, Equation (6.23) can be

rewritten as:

Vi = Vi ≠ Wi¸V‡¸ . (6.24)

This results in the following loop at iteration k:

• Initialize Vi from X1
i‡k .

• For all ¸ œ {1, . . . , k ≠ 1}, and all i œ [n] (or i œ fi¸+1), apply (6.24).

• Compute Wik = Vi/(1 + V‡k)

Note that the value of V is not necessary for iteration k (only the values of Wi¸

are needed). This shows that the algorithm can be implemented with a memory

O(n2).

6.A.3 Speedup when not checking the indexability: First found, go

last

When the indexability is not tested, the update (6.24) is computed for all i œ fi¸+1.

This creates inefficiencies (due to inefficient cache usage) because the elements Vi

are not accessed sequentially.

To speed up the memory accesses, our solution is to sort the items during the

execution of the algorithm. At iteration k, the algorithm computes ‡k. When this

is done, our implementation switches all quantities in positions ‡k and n ≠ k + 1.
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These quantities are ”, y, z,W and X. For instance, once ‡1 is found, we know that

the state at position n is state n, and we do the following switches:

”‡1 , ”n æ ”n, ”‡1

y1
‡1 , y1

n æ y1
n, y1

‡1

z1
‡1 , z1

n æ z1
n, z1

‡1

W‡1:,Wn: æ Wn:,W‡1:

and X‡1:,Xn: æ Xn:,X‡1:.

To do so, we need an array to store all states such that at iteration k, the first n ≠ k

states of the array are the active states. We will need to track the position of each

state in such array.
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Part III

Learning in Markovian bandits





Learning Algorithms for

Rested Markovian Bandits

7

In this chapter, we study the scalability of model-based algorithms learning the

optimal policy of the discounted rested Markovian bandit problem with n arms. We

construct variants of three algorithms specially tailored to Markovian bandits (MB)

that we call MB-PSRL, MB-UCRL2, and MB-UCBVI. We consider an episodic setting

with geometrically distributed episode length and measure the performance of the

algorithm in terms of regret (Bayesian regret for MB-PSRL, and expected regret for

MB-UCRL2 and MB-UCBVI). For this setting, we prove that all algorithms have a

low regret in Õ(S
Ô

nK) – where K is the number of episodes, n is the number of

arms, and S is the number of states of each arm. Up to a factor
Ô

S, these regrets

match a Bayesian minimax regret lower bound of Ω(
Ô

SnK) that we also derive.

Even if their theoretical regrets are comparable, the time complexities of the three

agorithms vary greatly: We show that the time complexity of MB-UCRL2 and all

optimistic algorithms that use confidence bonuses on transition matrices grows

exponentially in n. In contrast, MB-UCBVI does not use bonuses on transition

matrices, and we show that it can be implemented efficiently, with a time complexity

linear in n. Our numerical experiments show, however, that its empirical regret is

large. Our Bayesian algorithm, MB-PSRL, enjoys the best of both worlds: its running

time is linear in the number of arms, and its empirical regret is the smallest of all

three algorithms. This is a new addition to understanding the power of Bayesian

algorithms, which can often be tailored to the structure of the problems to learn.

This study is published in Transactions on Machine Learning Research (TMLR)

([GGK22]).

Section 7.2 describes the work in learning with structured MDPs such as factored

MDPs and rested bandit with average reward criterion. We recall the formulation

of the rested bandit problem with the discount factor “ in Section 7.3. Section 7.4

contains the episodic learning setup in which the episode length is geometrically

distributed. We present the modification of PSRL, UCRL2, and UCBVI to rested

bandits with the discount factor “ in Section 7.5. We provide an analysis of their

regret in Section 7.6. Section 7.7 contains our discussion on the scalability of

each algorithm. We report numerical evidence about each algorithm’s learning
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performance and runtime in Section 7.8. Section 7.9 summarizes the theoretical

and numerical results of the modified algorithms and concludes the chapter.

7.1 Contributions

We consider an episodic setting with a geometrically distributed episode length, in

which the optimal strategy is the Gittins index policy. We study a specialization of

PSRL [ORV13] to Markovian bandits. We call it Markovian bandit posterior sampling

(MB-PSRL), which consists in using PSRL with a prior tailored to Markovian bandits.

We show that the Bayesian regret of MB-PSRL is sublinear in the number of episodes

and arms. We also provide an expected regret guarantee for two optimistic algo-

rithms that we call MB-UCRL2 and MB-UCBVI. They are, respectively, a modification

of UCRL2 [JOA10] and UCBVI [AOM17]. They use modified confidence bounds

adapted to Markovian bandit problems. The upper bound for their regret is similar

to the bound for MB-PSRL. This shows that in terms of regret, the Bayesian approach

(MB-PSRL) and the optimistic approach (MB-UCRL2 and MB-UCBVI) scale well with

the number of arms. We also provide a Bayesian minimax regret lower bound for any

learning algorithm in the rested Markovian bandit problem with the aforementioned

setting, which shows that the regret bounds that we obtain for the three algorithms

are close to optimal.

The situation is radically different when considering the processing time: the runtime

of MB-PSRL is linear (in the number of arms), while the runtime of MB-UCRL2

is exponential. We show that this is not an artifact of our implementation of MB-

UCRL2 by exhibiting a Markovian bandit problem for which being optimistic in each

arm is not optimistic in the global MDP. This implies that UCRL2 and its variants

[BMT20; Fru+18; TM18; FCG10] cannot be adapted to have efficient runtime in

Markovian bandit problems unless an oracle gives the optimistic policy. We argue

that this non-scalability of UCRL2 and its variants is not a limitation of the optimistic

approach but comes from the fact that UCRL2 relies on extended value iteration

[JOA10] needed to deal with upper confidence bounds on the transition matrices.

We show that MB-UCBVI, an optimistic algorithm that does not add any bonus on

transition probabilities and hence does not rely on extended value iteration, does

not suffer from the same problem. Its regret is sublinear in the number of episodes

and arms (although larger than the regret of both MB-PSRL and MB-UCRL2), and

its runtime is linear in the number of arms. This allows us to conclude that, on

the one hand, if a weakly coupled MDP or a factored MDP can be solved efficiently

when all the parameters are known, then the Bayesian approach is efficient both
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in terms of learning and computation time. On the other hand, knowing how to

solve a weakly coupled MDP or a factored MDP efficiently is not sufficient for all

optimistic algorithms to be computationally efficient.

We also conduct a series of numerical experiments to compare the performance of

MB-PSRL, MB-UCRL2, and MB-UCBVI. They confirm the good behavior of MB-PSRL,

both in terms of regret and computational complexity. Furthermore, these numerical

experiments also show that the empirical regret of MB-UCBVI is larger than the

regret of MB-PSRL and MB-UCRL2, confirming the comparisons between the upper

bounds derived in Theorem 7.2. All this makes MB-PSRL the better choice between

the three learning algorithms.

7.2 Related work

Markovian bandits have been applied to many problems such as single-machine

scheduling, choosing a job in resource constraint problems as well as other industrial

research problems. Many applications can be found in [Put14, Section 3.6] and

[GGW11]. [Git79] shows that the discounted rested Markovian bandit can be

solved linearly in the number of arms using Gittins index policy. Therefore, several

papers are focused on the complexity of computing Gittins index (see, e.g., [GGK23;

CM14]).

In this chapter, we focus on the rested Markovian bandit problems with a discount

factor “ < 1 where all reward functions and transition matrices are unknown.

A possible approach to learn under these conditions is to ignore the problem’s

structure and view the Markovian bandit problem as a generic MDP. As we have

seen in Chapter 3, there are two main families of model-based general-purpose

reinforcement learning (RL) algorithms with a regret guarantee. The first one uses

the optimism in face of uncertainty (OFU) principle and the second uses a Bayesian

approach, the posterior sampling method introduced by [Tho33]. Yet, applied as-is

to Markovian bandit problems, the regret bound of these general-purpose algorithms

grows exponentially with the number of arms.

Our work is not the first attempt to exploit the structure of an MDP to improve

learning performance. Factored MDPs (the state space can be factored into n œ N
ú

components) are investigated in [Gue+03], where the asymptotic convergence to

the optimal policy is proved to scale polynomially in the number of components.

The regret of learning algorithms in factored MDPs with a factored action space is

considered by [TQS20; RM20; XT20; OV14]. Our work differs substantially from
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these. First, the Markovian bandit problem is not a factored MDP because the action

space is global and cannot be factored. Second, our reward is discounted over an

infinite horizon while factored MDPs have been analyzed with no discount. Finally,

and most importantly, the factored MDP framework assumes that the successive

optimal policies are computed by an unspecified solver (oracle). There is no guar-

antee that the time complexity of this solver scales linearly with the number of

components, especially for OFU-based algorithms. For rested bandits with discount,

we get additional leverage: when all parameters are known, the Gittins index policy

is optimal, and its computational complexity is linear in the number of arms. This

reveals an interesting difference between Bayesian and extended value based algo-

rithms (the former being scalable and not the latter in general). This difference is

absent from the literature on factored MDPs because such papers do not consider

the time complexity.

For rested bandits, [TL12] consider an average reward setting, “ = 1, and provide

algorithms with a logarithmic regret guarantee for rested and restless settings.

However, they consider a notion of regret known as weak regret, which measures

how fast the learning algorithm identifies the best arm in the stationary regime.

So, it ignores the learning behavior at the beginning of the learning process. In

contrast, we consider a discounted rested bandit setting in which the regret of

[TL12] makes no more sense due to the discount factor, and we propose a regret

definition similar to what is frequently used in RL literature. This regret captures the

learning algorithm’s performance during the whole learning process. In addition,

[Ort+12; JT19; WHL20] consider partially observed restless bandit setting in which

the learner observe only the state of chosen arms. [Ort+12; WHL20] propose

optimistic algorithms for the infinite-horizon setting and provide regret bounds that

are sublinear in time. Again the discounted case is not considered in these papers,

while it is particularly interesting because learning algorithms can leverage the

optimal Gittins index policy. [JT19] propose a Bayesian algorithm in the episodic

finite-horizon setting and also provide a regret bound that is sublinear in the number

of episodes. However, the computational complexity is not studied in their work (the

algorithm of [Ort+12] is intractable while the ones of [JT19; WHL20] rely on an

unspecified problem solver called oracle). Contrarily, we provide both performance

guarantee and computational complexity analysis of each algorithm we consider in

this chapter. Finally, [KPT21] consider a more general setting of restless bandits in

which each arm is an MDP with multiple actions. The learner has to decide which

arms to activate and which action to execute on each activated arm under a global

action constraint. The authors propose a suboptimal Lagrangian policy to solve

the restless bandit problem with known parameters and a sampling algorithm to
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learn their Lagrangian policy when the parameters are unknown. Unfortunately, no

performance guarantee is provided in their work.

Since index policies scale with the number of arms, using Q-learning approach

to learn such a policy is also popular, see e.g., [AB22; Fu+19; Duf95]. [Duf95]

address the same Markovian bandit problem as we do: their algorithm learns the

optimal value in the restart-in-state MDP [KV87] for each arm and uses Softmax

exploration to solve the exploration-exploitation dilemma. As mentioned on page

250 of [ACF02], however, there exists no finite-time regret bound for this algorithm.

Furthermore, tuning its hyperparameters (learning rate and temperature) is rather

delicate and unstable in practice.

7.3 Rested Markovian bandit with discount

We recall from Chapter 4 that a rested Markovian bandit is a multi-armed bandit

having n œ N
+ arms. Each arm ÈSa, ra,PaÍ for a œ {1, . . . , n} =: [n] is a Markov

reward process with a finite state space Sa of size S. Without loss of generality, we

assume that the state spaces of the arms are pairwise distinct: Sa fl Sb = ÿ for a ”= b.

In the following, the state of an arm a will always be denoted with an index a: we

will denote such a state by sa or sÕ
a. As state spaces are disjoint, this allows us to

simplify the notation by dropping the index a from the reward and transition matrix:

when convenient, we will denote them by r(sa) instead of ra(sa) and by P (sa, sÕ
a)

instead of Pa(sa, sÕ
a) since no confusion is possible.

At time 1, the global state s1 is distributed according to some initial distribution fl

over the global state space X := S1◊ . . . ◊Sn. At time t Ø 1, the decision maker

observes the states of all arms, st = (st,1 . . . st,n), and chooses which arm at to

activate. This problem can be cast as an MDP – that we denote by M – with state

space X and action space [n]. Let a œ [n] and s, sÕ œ X . If the state at time t is

st = s, the chosen arm is at = a, then arm a incurs a random reward rt drawn from

some distribution on [0, 1] with mean r(sa) and the MDP M transitions to a new

state st+1 = sÕ with probability p(sÕ | s, a) that satisfies:

p(sÕ | s, a) =

I

P (sa, sÕ
a) if sb = sÕ

b for all b ”= a;

0 otherwise.
(7.1)

That is, the activated arm makes a transition while the other arms remain in the

same state.
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Let Π be the set of deterministic policies, i.e., the set of functions fi : X ‘æ [n]. For

the MDP M , we denote by vfi
M (s) the expected cumulative discounted reward of M

under policy fi starting from an initial state s:

vfi
M (s)=E

fi

C
Œÿ

t=1

“t≠1rt | s1=s

D

.

An alternative definition of v is to consider a finite-horizon problem with a geometri-

cally distributed length. Indeed, let H be a time-horizon geometrically distributed

with parameter 1 ≠ “ > 0. We have

vfi
M (s)=E

C

E
fi

C
Hÿ

t=1

rt | s1=s

DD

. (7.2)

Problem 7.1

Given a rested bandit M with n arms, each is a Markov reward process ÈSa, ra,PaÍ
with a finite state space Sa, find a policy fi : S1◊ . . . ◊Sn ‘æ [n] that maximizes vfi

M (s)

for any state s distributed according to initial global state distribution fl.

By a small abuse of notation, we denote by vfi
M (fl) the expected reward when the

initial state is randomly generated according to fl : vfi
M (fl) =

q

s fl(s)vfi
M (s). A policy

fiú is optimal for Problem 7.1 if vfiú

M (s) Ø vfi
M (s) for all fi œ Π and s œ X . As we

have seen in Chapter 2, such a policy exists and does not depend on s (or fl). One

well-known optimal policy is the Gittins index policy as presented in Chapter 4.

7.4 Online learning and episodic regret

We now consider an extension of Problem 7.1 in which the decision maker does not

know the transition matrices nor the rewards. Our goal is to design a reinforcement

learning algorithm that learns the optimal policy from past observations. Similarly

to what is done for finite-horizon reinforcement learning with deterministic horizon

– see Section 3.3.1 – we consider a decision maker that faces a sequence of inde-

pendent replicas of the same rested bandit problem, where the transitions and the

rewards are drawn independently for each episode. What is new here is that the

time horizon H is random and has a geometric distribution with expected value

1/(1 ≠ “). It is drawn independently for each episode. This implies that Gittins index

policy is an optimal policy in this setting.
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Let H1, . . . , Hk be the sequence of random episode lengths and let tk := 1+
qk≠1

i=1 H i

be the starting time of the kth episode. The observations made prior and up

to episode k is denoted otk := {s1, a1, r1, . . . , stk≠1, atk≠1, rtk≠1, stk}. An Episodic

Learning Algorithm L is a function that maps observations otk to L(otk), a probability

distribution whose support is a subset of Π. We recall from Algorithm 1 that at

the beginning of episode k, the algorithm samples fik ≥ L(otk) and uses this policy

during the whole kth episode. Note that one could also design algorithms where

learning takes place inside each episode. We will see later that episodic learning as

described here is enough to design algorithms that are essentially optimal, in the

sense given by Theorem 7.2 and Theorem 7.3.

Similarly to Definition 3.1, for an instance M of a rested bandit problem and a total

number of episodes K, the regret of a learning algorithm L is defined by

Regret(L, M, K) :=
Kÿ

k=1

vfiú

M (stk) ≠ vfik

M (stk). (7.3)

It is the sum over all episodes of the value of the optimal policy fiú minus the value

obtained by applying the policy fik chosen by the algorithm for episode k. In what

follows, we will provide bounds on the expected regret.

Recall that a “good” algorithm L is such that its expected regret E [Regret(L, M, K)]

grows sub-linearly in the number of episodes K. This implies that the expected

regret over episode k converges to 0 as k goes to infinity. Such an algorithm learns

an optimal policy of Problem 7.1.

Note that, for discounted MDPs, an alternative regret definition (used for instance

by [HZG21b]) is to use the non-episodic version
qT

t=1(vfiú

M (st) ≠ vfit
M (st)). In our

definition at Equation (7.3), we use an episodic approach where the process is

restarted according to fl after each episode of geometrically distributed length Hk.

7.5 Learning algorithms for rested Markovian bandits

In what follows, we present three algorithms having a regret that grows like

Õ(S
Ô

nK), that we call MB-PSRL, MB-UCRL2 and MB-UCBVI. As their names

suggest, these algorithms are adaptation of PSRL, UCRL2 and UCBVI to rested

bandit problems that intend to overcome the exponentiality in n of their regret. The

structure of the three MB-* algorithms are similar and is represented in Algorithm 6.

All algorithms are episodic learning algorithms. At the beginning of each episode
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k, an MB-* learning algorithm computes a new policy fik that will be used during

the episode of geometrically distributed length. The difference between the three

algorithms lies in the way this new policy fik is computed. MB-PSRL uses posterior

sampling while MB-UCRL2 and MB-UCBVI use the optimism. We detail the three

algorithms below.

Algorithm 6: Pseudocode of the three MB-* algorithms.
Input :Discount factor “, initial distribution fl (and a prior distribution

{„a}aœ[n] for MB-PSRL)

1 for episodes k = 1, 2, . . . do

2 Compute a new policy fik (using posterior sampling or optimism). ;
3 Set tk Ω 1 +

qk≠1
i=1 H i, sample stk ≥ fl and Hk ≥ Geom(1 ≠ “).;

4 for t Ω tk to tk + Hk do

5 Activate arm at = fik(st). ;
6 Observe rt and st+1. ;

7.5.1 MB-PSRL

MB-PSRL starts with a prior distribution „a over the parameters (ra,Pa) of all arm

a œ [n]. At the start of each episode k, MB-PSRL computes a posterior distribution

„a(· | otk) of the parameters for each arm a œ [n] and samples parameters (rk
a ,P k

a )

from „a(· | otk). Then, MB-PSRL uses {(rk
a ,P k

a )}aœ[n] to compute the Gittins index

policy fik that is optimal for the sampled problem. The policy fik is then used for

the whole episode k. Note that as fik is a Gittins index policy, it can be computed

efficiently.

The difference between PSRL and MB-PSRL is mostly that MB-PSRL uses a prior dis-

tribution tailored to Markovian bandit. The only hyperparameter of MB-PSRL is the

prior distribution „. As we see in Appendix 7.E, MB-PSRL seems robust to the choice

of the prior distribution, even if a coherent prior gives a better performance than a

misspecified prior, similarly to what happens for Thompson’s sampling [Rus+18].

7.5.2 MB-UCRL2

At the beginning of each episode k, MB-UCRL2 computes the following quantities:

for each state sa œ Sa, Nk(sa) is the number of times that Arm a is activated before

episode k while being in state sa, and r̂k(sa), and P̂ k(sa, ·) are the empirical means

of r(xa) and P (sa, ·) respectively. We define the confidence bonuses —k
r (sa) :=
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Ú

log(2SnKtk)
2 max{1,Nk(sa)}

and —k
P (sa) :=

Ú

2 log(SnK2Stk)
max{1,Nk(sa)}

. This defines a confidence set Mk as

follows: a rested bandit M Õ is in M
k if for all a œ [n] and sa œ Sa:

-
-
-rÕ(sa) ≠ r̂k(sa)

-
-
- Æ —k

r (sa) and
.
.
.P Õ(sa, ·) ≠ P̂ k(sa, ·)

.

.

.
¸1

Æ —k
P (sa). (7.4)

MB-UCRL2 then chooses a policy fik that is optimal for the optimistic problem

Mk œ M
k:

fik œ arg max
fi

max
M ÕœMk

vfi
M Õ(fl). (7.5)

Note that as we explain later in Section 7.7, we believe that there is no efficient

algorithm to compute the optimistic policy fik of Equation (7.5) unless there is an

oracle that gives the optimistic problem Mk.

Compared to a vanilla implementation of UCRL2, MB-UCRL2 uses the structure of

the Markovian bandit problem: The constraints Equation (7.4) are on P whereas

vanilla UCRL2 uses constraints on the full transition p (defined in Equation (7.1)).

This leads MB-UCRL2 to use the bonus term that scales as
Ò

S/Nk(sa) whereas

vanilla UCRL2 would use the term in
Ò

Sn/Nk(s, a).

7.5.3 MB-UCBVI

At the beginning of episode k, MB-UCBVI uses the same quantities Nk(sa), r̂k(sa),

and P̂ k(sa, ·) as MB-UCRL2. The difference lies in the definition of the bonus

terms. While MB-UCRL2 uses a bonus on the reward and on the transition matrices,

MB-UCBVI defines a bonus —k(sa):= 1
1≠“

Ú

log(2SnKtk)
2 max{1,Nk(sa)}

that is used on the reward

only. MB-UCBVI computes the Gittins index policy fik that is optimal for the bandit

problem {(r̂k
a+—k, P̂ k

a )}aœ[n].

Similarly to the case of UCRL2, a vanilla implementation of UCBVI would use

a bonus that scales exponentially in the number of arms. MB-UCBVI makes an

even better use of the structure of the learned problem because the optimistic

MDP {(r̂k
a+—k, P̂ k

a )}aœ[n] is still a Markovian bandit problem. This implies that the

optimistic policy fik is a Gittins index policy, and that can therefore be computed

efficiently.
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7.6 Regret analysis

In this section, we first present upper bounds on the expected regret of the three

learning algorithms. These bounds are sublinear in the number of episodes and

sublinear in the number of arms. We then derive a minimax lower bound on the

Bayesian regret of any learning algorithm in the rested Markovian bandit problem

with discount.

7.6.1 Upper bounds on regret

The theorem below provides upper bounds on the regret of the three algorithms

presented in Section 7.5.

Theorem 7.2 (Regret upper bounds)

Let f(S, n, K, “) = Sn
1

ln K/(1≠“)
22

+
Ô

SnK
1

ln K/(1≠“)
23/2

. There exists

universal constants C, C Õ and C ÕÕ independent of the model (i.e., that do not

depend on S, n, K and “) such that:

• For any prior distribution „:

BayesRegret(MB-PSRL, „, K) Æ C

3Ô
S+ ln

SnK ln K

1 ≠ “

4

f(S, n, K, “),

• For any Markovian bandit model M :

E [Regret(MB-UCRL2, M, K)] Æ C Õ
3Ô

S+ ln
SnK ln K

1 ≠ “

4

f(S, n, K, “),

E [Regret(MB-UCBVI, M, K)] Æ C ÕÕ
1

Ô
S

1 ≠ “

2 3

ln
SnK ln K

1 ≠ “

4

f(S, n, K, “).

We provide a sketch of proof below. The detailed proof is provided in Appendix 7.A.

This theorem calls for several comments. First, it shows that when K Ø Sn/(1 ≠ “),

the regret of MB-PSRL and MB-UCRL2 is smaller than

Õ

A

S
Ô

nK

(1 ≠ “)3/2

B

, (7.6)

where the notation Õ means that all logarithmic terms are removed. The regret of

MB-UCBVI has an extra 1/(1 ≠ “) factor.
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Hence, the regret of the three algorithms is sublinear in the number of episodes K

which means that they all are no-regret algorithms. This regret bound is sublinear in

the number of arms which is very significant in practice when facing a large number

of arms. Note that directly applying PSRL, UCRL2 or UCBVI would lead to a regret

in Õ
1

Sn
Ô

nK
2

or Õ
1Ô

nSnK
2

, which is exponential in n.

Second, the upper bound on the expected regret of MB-UCRL2 (and of MB-UCBVI)

is a guarantee for a specific problem M while the bound on Bayesian regret of MB-

PSRL is a guarantee in average overall the problems drawn from the prior „. Hence,

the bounds of MB-UCRL2 and MB-UCBVI are stronger guarantee compared to the

one of MB-PSRL. Yet, as we will see later in the numerical experiments reported in

Section 7.8, MB-PSRL seems to have a smaller regret in practice, even when the

problem does not follow the correct prior. An interesting open question would be

to find a prior that would guarantee that MB-PSRL has a good worst-case regret

bound. We do not know if such a prior exists and to the best of our knowledge,

this question is also open for the classical PSRL. Note that there exist Bayesian type

algorithms with worst-case guarantees, see e.g., [Ish+21; ACJ21; WSY20; AJ17],

but they contain an optimistic part, and it is not clear how to implement them in an

efficient manner for Markovian bandits.

Third, the result of Theorem 7.2 is the statistical evaluation of the three learning

algorithms and does not require them to use Gittins index policy (in particular,

MB-UCRL2 does not use Gittins index policy). What is required is that policy fik

is optimal for the sampled problem Mk for MB-PSRL (so that Lemma 7.9 applies)

or for the optimistic problem Mk for MB-UCBVI (so that (7.10) is valid). Indeed,

instead of using Gittins index policy for MB-PSRL or MB-UCBVI, assume that we

have access to an oracle that provides an optimal policy for any given Markovian

bandit problem. Then, the upper bound on regret in Theorem 7.2 still holds when

MB-PSRL and MB-UCBVI use the oracle to compute policy fik. Gittins index policy is

required only for the runtime evaluation as we will see in Section 7.8.

Finally, our bound in Equation (7.6) is linear in S, the state space size of each arm.

Having a regret bound linear in the state space size is currently state-of-the-art for

Bayesian algorithms, see e.g., [AJ17; Ouy+17] and our discussion in Appendix 7.A.3.

For optimistic algorithms, the best regret bounds are linear in the square root of the

state size because they use Bernstein’s concentration bounds instead of Weissman’s

inequality [AOM17], yet this approach does not work in our setting due to the

randomness of episode’s length and the bound of MB-UCBVI depends linearly on S.

We discuss more about this in Appendix 7.A.5. UCBVI has also been studied in the
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discounted case by [HZG21b]. They use, however, a different definition of regret,

making their bound on the regret hardly comparable to ours.

Sketch of proof

A crucial ingredient of our proof is to work with the value function over a random

finite time horizon (W defined below), instead of working directly with the dis-

counted value function v. For a given model M , and a deterministic policy fi, a

horizon H and a time step h Æ H, we define by W fi
M,h:H(s) the value function of

policy fi over the finite time horizon H ≠ h + 1 when starting in s at time h. It is

defined by: for any state s œ X , a = fi(s),

W fi
M,h:H(s) := r(sa)+

ÿ

sÕœX

p(sÕ | s, a)W fi
M,h+1:H(sÕ), (7.7)

with W fi
M,H:H(s) := r(sa). We recall from (2.7) and (7.2) that vfi

M (s) = E

Ë

W fi
M,1:H(s)

È

.

This characterization is important in our proof. Since the episode length Hk is

independent of the observations otk available before episode k, for any policy fik

that is independent of Hk, one has

E

Ë

vfik

M (stk) | otk , fik
È

= E

Ë

W fik

M,1:Hk(stk) | otk , fik
È

. (7.8)

In the above Equation (7.8), the expectation is taken over all initial state stk and all

possible horizon Hk.

Equation (7.8) will be very useful in our analysis as it allows us to work with either v

or W interchangeably. While the proof of MB-PSRL could be done by only studying

the function W , the proof of MB-UCRL2 and MB-UCBVI will use the expression of

the regret as a function of v to deal with the non-determinism. Indeed, at episode

k, all algorithms compare the optimal policy fiú (that is optimal for the true MDP

M) and a policy fik chosen by the algorithm (that is optimal for the MDP Mk that

is either sampled by MB-PSRL or chosen by an optimistic principle). The quantity

∆
k := W fiú

M,1:Hk(stk) ≠ W fik

M,1:Hk(stk) equals:

W fiú

M,1:Hk(stk)≠W fik

Mk,1:Hk(stk)
¸ ˚˙ ˝

(A)

+ W fik

Mk,1:Hk(stk)≠W fik

M,1:Hk(stk)
¸ ˚˙ ˝

(B)

. (7.9)

The analysis of the term (B) is similar for the three algorithms: it is bounded by the

distance between the sampled MDP Mk and the true MDP M which in turn can be

bounded by using a concentration argument (Lemma 7.5) based on Hoeffding’s and
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Weissman’s inequalities. Compared with the literature [AOM17; Ouy+17], our proof

leverages on taking conditional expectations, making all terms whose conditional

expectation is zero disappear. One of the main technical hurdle is to deal with the

random episodes lengths H1, . . . , Hk. This is required in our approach and is not

needed in the classical analysis of finite-horizon problems.

The analysis of (A) depends heavily on the algorithm used. The easiest case is PSRL:

As our setting is Bayesian, the expectation of the first term (A) with respect to the

model is zero (see Lemma 7.9). The case of MB-UCRL2 and MB-UCBVI are harder.

In fact, our bonus terms are specially designed so that vfik

Mk(s) is an optimistic upper

bound of the true value function with high probability, that is:

vfik

Mk(s) = max
fi

max
M ÕœMk

vfi
M Õ(s) Ø vfiú

M (s). (7.10)

This requires the use of v and not W , and it is used to show that the expectation of

the term (A) of Equation (7.9) cannot be positive.

7.6.2 Bayesian minimax lower bound

After obtaining upper bounds on the regret, a natural question is: can we do better?

Or in other terms, does there exist a learning algorithm with a smaller regret? As we

explained in Chapter 3, this question is addressed by the notion of minimax regret

lower bound: for a given set of parameters (S, n, K, “), a minimax lower bound is

a lower bound on the quantity infL supM Regret(L, M, K), where the supremum is

taken among all possible models that have parameters (S, n, K, “) and the infimum

is taken over all possible learning algorithms. The next theorem provides a lower

bound on the Bayesian regret. It is therefore stronger than a minimax bound for

two reasons: First, the Bayesian regret is an average over models, which means

that there exists at least one model that has a larger regret than the Bayesian lower

bound; And second, in Theorem 7.3, we allow the algorithm to depend on the prior

distribution „ and to use this information.

Theorem 7.3 (Minimax Bayesian regret lower bound)

For any state size S, number of arms n, discount factor “ and number of
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episodes K Ø 16S, there is a prior distribution „ on rested bandit problems with

parameters (S, n, K, “) such that, for any learning algorithm L:

BayesRegret(L, „, K) Ø 1

60

Û

SnK

(1 ≠ “)
. (7.11)

The proof is given in Appendix 7.B and uses a counterexample inspired by the

one of [JOA10]. Note that for general MDPs, the minimax regret lower bound in

Proposition 3.4 says that a learning algorithm cannot have a regret smaller than

Ω
!Ô

S̃ÃT̃
"
, where S̃ is the number of states of the MDP, Ã is the number of actions

and T̃ is the number of time steps. Yet, this lower bound is not directly applicable

to rested bandit with S̃ = Sn because Markovian bandit problems are very specific

instances of MDPs and this can be exploited by the learning algorithm. Also note

that this lower bound on the Bayesian regret is also a lower bound on the expected

regret of any non-Bayesian algorithm for any MDP model M .

Apart from the logarithmic terms, the lower bound provided by Theorem 7.3 differs

from the bound of Theorem 7.2 by a factor
Ô

S/(1 ≠ “). This factor is similar to

the one observed for PSRL and UCRL2 [ORV13; JOA10]. There are various factors

that could explain this. We believe that the extra factor 1/(1 ≠ “) might be half

due to the episodic nature of MB-PSRL and MB-UCRL2 (when 1/(1 ≠ “) is large,

algorithms with internal episodic updates might have smaller regret) and half due

to the fact that the lower bound of Theorem 7.3 is not optimal and could include a

term 1/
Ô

1 ≠ “ (similar to the term O(
Ô

D) of the lower bound of [OV16; JOA10]).

The factor
Ô

S between our two bounds comes from our use of Weissman’s inequality.

It might be possible that our regret bounds are not optimal with respect to this term,

although such an improvement cannot be obtained using the same approach of

[AOM17].

7.7 Scalability of learning algorithms for Markovian

bandits

Historically, Problem 7.1 was considered unresolved until [Git79] proposed Gittins

index. This is because previous solutions were based on Dynamic Programming

in the global MDP which are computationally expensive. Hence, after establishing

regret guarantees, we are now interested in the computational complexity of our

learning algorithms, which is often disregarded in the learning literature.
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7.7.1 MB-PSRL and MB-UCBVI are scalable

If one excludes the simulation of the MDP, the computational cost of MB-PSRL and

MB-UCBVI of each episode is low. For MB-PSRL, its cost is essentially due to three

components: Updating the observations, sampling from the posterior distribution

and computing the optimal policy. The first two are relatively fast when the conjugate

posterior has a closed form: updating the observation takes O(1) at each time, and

sampling from the posterior can be done in O(nS2) – more details on posterior

distributions are given in Appendix 7.D. When the conjugate posterior is implicit

(i.e., under the integral form), the computation can be higher but remains linear in

the number of arms. For MB-UCBVI, the cost is due to two components: computing

the bonus terms and computing the Gittins policy for the optimistic MDP. Computing

the bonus is linear in the number of arms and the length of the episode. As explained

in Section 4.2.2 and Chapter 6, the computation of the Gittins index policy for a

given rested bandit can be done in O(nS3). Hence, MB-PSRL and MB-UCBVI have a

regret and a runtime both scale with the number of arms.

7.7.2 MB-UCRL2 is not scalable because it cannot use an index

policy

While MB-UCRL2 has a regret equivalent to the one of MB-PSRL, its computational

complexity, and in particular the complexity of computing an optimistic policy that

maximizes Equation (7.5) does not scale with n. Such a policy can be computed

by using extended value iteration [JOA10]. This computation is polynomial in the

number of states of the global MDP and is therefore exponential in the number of

arms, precisely O(nS2n). For MB-PSRL (or MB-UCBVI), the computation is easier

because the sampled (or optimistic) MDP is a rested bandit problem. Hence, using

Proposition 4.1, computing the optimal policy can be done by computing local

indices. In the following, we show that it is not possible to solve Equation (7.5) by

using local indices. This suggests that MB-UCRL2 (nor any of the modifications of

UCRL2’s variants that would use extended value iteration) cannot be implemented

efficiently.

More precisely, to find an optimistic policy (that satisfies Equation (7.10)), UCRL2

and its variants, e.g., KL-UCRL [FCG10], compute a policy fik that is optimal for the

optimistic MDP in M
k. This is done by using extended value iteration. We now show

that this cannot be replaced by the computation of local indices.
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Let us consider that the estimates and confidence bonus for a given arm a are

B̂a := (r̂a, P̂a, —r, —P ). We say that an algorithm computes indices locally for Arm

a if for each sa œ Sa, it computes an index I B̂a(sa) by using only B̂a but not B̂b for

any b ”= a. We denote by fiI(B̂) the index policy that uses index I B̂a for arm a and by

M(B̂) the set of rested bandits M Õ that satisfy Equation (7.4).

Theorem 7.4 (Optimistic bandit requires knowledge of all arms’ bonuses)

For any algorithm that computes indices locally, there exists a rested bandit M ,

an initial state s and estimates B̂a := (r̂a, P̂a, —r, —P ) such that M œ M(B̂) and

sup
M ÕœM(B̂)

vfiI(B̂)

M Õ (s) < sup
fi

vfi
M (s).

Proof. The proof presented in Appendix 7.C is obtained by constructing a set M and

two MDPs M1 and M2 in M such that Equation (7.10) cannot hold simultaneously

for both M1 and M2.

This theorem implies that one cannot define local indices such that Equation (7.10)

holds for all rested bandits M Õ œ M
k. Yet, the use of this inequality is central in

the regret analysis of UCRL2 (see the proof of UCRL2 [JOA10]). This implies that

the current methodology to obtain regret bounds for UCRL2 and its variants, e.g.,

[BMT20; Fru+18; TM18; FCG10], that use extended value iteration is not applicable

to bound the regret of their modified version that computes indices locally.

Therefore, we believe that UCRL2 and its variants cannot compute optimistic policy

locally: they should all require the joint knowledge of all {B̂a}aœ[n].

7.8 Numerical experiments

In complement to our theoretical analysis, we report, in this section, the perfor-

mance of our three algorithms in a model taken from the literature. The model

is an environment with 3 arms, all following a Markov chain that is obtained

by applying the optimal policy on the river swim MDP. A detailed description is

given in Appendix 7.D, along with all hyperparameters that we used. Our nu-

merical experiments suggest that MB-PSRL outperforms other algorithms in terms

of average regret and is computationally less expensive than other algorithms.

To ensure reproducibility, the code and data of our experiments are available at

https://gitlab.inria.fr/kkhun/learning-in-rested-markovian-bandit.
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Performance result We investigate the average regret and policy computation

time of each algorithm. To do so, we run each algorithm for 80 simulations and

for K = 3000 episodes per simulation. We arbitrarily choose the discount factor

“ = 0.99. In Figure 7.1a, we show the average cumulative regret of the 3 algorithms.

We observe that the average regret of MB-UCBVI is larger than those of MB-PSRL

and MB-UCRL2. Moreover, we observe that MB-PSRL obtains the best performance

and that its regret seems to grow slower than O(
Ô

K). This is in accordance to what

was observed for PSRL [ORV13]. Note that the expected number of time steps after

K episodes is K/(1 ≠ “) which means that in our setting with K = 3000 episodes

there are 300 000 time steps in average. In Figure 7.1b, we compare the computation

time of the various algorithms. We observe that the computation time (the y-axis is

in log-scale) of MB-PSRL and MB-UCBVI, the index-based algorithms, are the fastest

by far. Moreover, the computation time of these algorithms seem to be independent

of the number of episodes. These two figures show that MB-PSRL has the smallest

regret and computation time among all compared algorithms.

(a) Average cumulative regret in function of the
number of episodes.

(b) Average runtime per episode. The vertical
axis is in log-scale.

Figure 7.1.: Experimental result for the three 4-state random walk arms given in Table 7.1.
The x-axis is the number of episodes. Each algorithm is identified by a unique
color for all figures.

Robustness (larger models and different priors) To test the robustness of MB-PSRL,

we conduct two more sets of experiments that are reported in Appendix 7.E. They

confirm the superiority of MB-PSRL. The first experiment is an example from [Duf95]

with 9 arms each having 11 states. This model illustrates the effect of the curse

of dimensionality: the global MDP has 119 states which implies that the runtime

of MB-UCRL2 makes it impossible to use, while MB-PSRL and MB-UCBVI take a

few minutes to complete 3000 episodes. Also in this example, MB-PSRL seems to

converge faster to the optimal policy than MB-UCBVI. The second experiment tests

the robustness of MB-PSRL to the choice of prior distribution. We provide numerical

evidences that show that, even when MB-PSRL is run with a prior „ that is not the
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one from which M is drawn, the regret of MB-PSRL remains acceptable (around

twice the regret obtained with a correct prior).

7.9 Conclusion

In this chapter, we present MB-PSRL, a modification of PSRL to rested Markovian

bandit problems with discount. We show that its regret is close to the lower bound

that we derive for this problem while its runtime scales linearly with the number of

arms. Furthermore, and unlike what is usually the case, MB-PSRL does not have

an optimistic counterpart that scales well: we prove that MB-UCRL2 also has a

sublinear regret but has a computational complexity exponential in the number of

arms. This result generalizes to all the variants of UCRL2 that rely on extended

value iteration. We nevertheless show that OFU approach may still be pertinent for

Markovian bandit problems: MB-UCBVI, a version of UCBVI can use Gittins indices

and does not suffer from the dimensionality curse: it has a sublinear regret in terms

of the number of episodes and arms as well as a linear time complexity. However, its

regret bound remains larger than the one of MB-PSRL.

The broad implication of this work is that, on the one hand, if a weakly coupled

MDP or factored MDP can be solved efficiently when all the parameters are known,

then PSRL can be adapted to have efficient regret and runtime. On the other hand,

solving weakly coupled MDP or factored MDP efficiently when all the parameters are

known does not imply that all optimistic algorithms are computationally efficient.

This is a major difference between the Bayesian and the optimistic approach.

124 Chapter 7 Learning Algorithms for Rested Markovian Bandits



Appendix of the chapter

The appendix is organized as follows:

• In Appendix 7.A, we prove Theorem 7.2.

• In Appendix 7.B, we obtain a Bayesian minimax regret lower bound for any

reinforcement learning algorithm in rested bandits (Theorem 7.3).

• In Appendix 7.C, we show that Equation (7.5) cannot be solved by local indices

(Theorem 7.4).

• In Appendix 7.D, we provide a detailed description of the algorithms that we

use in our numerical comparisons.

• In Appendix 7.E, we provide additional numerical experiments that show the

good behavior of MB-PSRL.

• In Appendix 7.F, we provide details about the experimental environment and

the computation time needed.

7.A Proof of Theorem 7.2

The proof of the regret bounds for our three algorithms share a common structure

but with different technical details. In this section, we do a detailed proof of the

three algorithms by factorizing as much as possible what can be factorized in the

different proofs. This proof is organized as follows:

• In Section 7.A.1, we give an overview of the proof that is common to all

algorithms.

• In Section 7.A.2, we provide technical lemmas that are used in the detailed

proofs of each algorithm.

• In Section 7.A.3, 7.A.4 and 7.A.5, we provide detailed analysis of MB-PSRL,

MB-UCRL2, and MB-UCBVI.
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7.A.1 Overview of the Proof

Let fiú be the optimal policy of the true MDP M and fik the optimal policy for Mk,

the sampled MDP at episode k. Recall that the expected regret is
qK

k=1 E

Ë

∆
k
È

,

where ∆
k=W fiú

M,1:Hk(stk)≠W fik

M,1:Hk(stk). For each of the three algorithms, we will

define an event Ek
Algo that is otk -measurable. Ek

Algo is true with high probability and

guarantees that M and Mk are close. We have:

E

Ë

∆
k
È

= E

5

∆
k
I{¬Ek

Algo} + ∆
k
I{Ek

Algo}

6

Æ E

Ë

Hk
È

P

1

¬Ek
Algo

2

+ E

5

∆
k
I{Ek

Algo}

6

(7.12)

because ∆
k Æ Hk and the random variables Hk and I{Ek

Algo} are independent. For

each of the three algorithms, the policy fik used at episode k is optimal for a model

Mk, that is either sampled from the posterior distribution for MB-PSRL, or computed

by extended value iteration for MB-UCRL2, or equal to the model with the bonus for

MB-UCBVI. We have

∆
k = W fiú

M,1:Hk(stk) ≠ W fik

Mk,1:Hk(stk)
¸ ˚˙ ˝

:=∆k
model

+ W fik

Mk,1:Hk(stk) ≠ W fik

M,1:Hk(stk)
¸ ˚˙ ˝

:=∆k
conc

.

As we deal with the expected regret and Hk is independent of the model Mk and of

the policy fik, we have:

E

Ë

∆
k
model

È

= vfiú

M (stk) ≠ vfik

Mk(stk) (7.13)

As we see later, the above equation can be used to show that E
5

∆
k
modelI{Ek

Algo}

6

is

either 0 (for MB-PSRL) or non-positive (for MB-UCRL2 or MB-UCBVI).

We are then left with E

5

∆
k
concI{Ek

Algo}

6

. To do so, we use Lemma 7.6 to show

that there exists a constant Bk (equal to Hk for MB-PSRL and MB-UCRL2, and

HkLk/(2(1 ≠ “)) for MB-UCBVI) such that

E

5

∆
k
concI{Ek

Algo}

6

= E

5

I{Ek
Algo}

1

W fik

Mk,1:Hk(stk)≠W fik

M,1:Hk(stk)
26

ÆE

S

UI{Ek
Algo}

tk+1≠1ÿ

t=tk

-
-
-rk(st,at)≠r(st,at)

-
-
- +Bk

.

.

.P k(st,at , ·)≠P (st,at , ·)
.
.
.

¸1

T

V (7.14)
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where
.
.
.P k(sa, ·) ≠ P (sa, ·)

.

.

.
¸1

=
q

sÕ
a

-
-
-P k(sa, sÕ

a) ≠ P (sa, sÕ
a)

-
-
-. For an arm a and a

state sa œ Sa, we denote1 by Nk(sa)=
qtk≠1

t=1 I{st,at =sa} the number of times that

Arm a is activated before episode k while being in state sa. Equation (7.14) relates

the performance gap to the distance between the reward functions and transition

matrices of the MDPs M and Mk. With LK=
Ò

2 ln 2SnK2 ln K2

1≠“
, the event Ek

Algo

guarantees that for all a, sa and k Ø 1,

-
-
-rk(sa)≠r(sa)

-
-
- Æ LK

Ò

max{1, Nk(sa)}
and

.

.

.P k(sa, ·)≠P (sa, ·)
.
.
.

¸1

Æ 2LK+3
Ô

S
Ò

max{1, Nk(sa)}

(7.15)

We use this with Equation (7.14) to show that:

Kÿ

k=1

E

5

∆
k
concI{Ek

Algo}

6

Æ E

S

UCK
Algo

Kÿ

k=1

tk+1≠1ÿ

t=tk

1
Ò

max{1, Nk(st,at)}

T

V , (7.16)

where CK
Algo is a random variable that depends on the algorithm studied.

The final analysis takes care of the right term of Equation (7.16) and is more

technical. It uses the fact that there cannot be too many large terms in this sum

because if an arm is activated many times, then 1/
Ò

Nk(st,at) is small. The main

technical hurdle here is to deal with the K random episodes H1, . . . , HK . This is

specific to our approach compared to the analysis of finite horizons. To bound this,

one needs to bound terms of the form E

Ë

max1ÆkÆK(Hk)–
È

with – œ {1.5, 2} (see

Equation (7.32)). To bound this, we use the geometric distribution of Hk to show

that E
Ë

max1ÆkÆK(Hk)–
È

= O
!
( ln K

1≠“
)–

"
(see Lemma 7.8).

7.A.2 Technical lemmas common to the three algorithms

In this section, we establish a series of lemmas that are true for any learning

algorithm used. They show that:

• The estimates r̂ and P̂ concentrates on their true values (Lemma 7.5);

• One can transform ∆
k
conc into Equation (7.14) (Lemma 7.6);

• The sum Equation (7.16) can be analyzed (Lemma 7.7).

1We use the notation I{E} to denote a random variable that equals 1 if E is true and 0 otherwise. For
instance, I{Yi=y} = 1 if Yi = y and 0 otherwise.
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High Probability Events

Recall that otk are the observations collected by the decision maker before episode

k. Based on otk , we compute the empirical estimators of reward vector and tran-

sition matrix as the following: For all a œ [n] and any sa œ Sa, let Nk(sa) =
qtk≠1

t=1 I{st,at =sa} be the number of times so far that an arm a was activated in state

sa (at episode 1, we have N1(sa) = 0). Recall that tk:=1+
qk≠1

i=1 H i, and that r̂k

and P̂ k are the empirical mean reward vector and transition matrix. More precisely,

r̂k(sa) is the empirical mean reward earned when arm a is chosen while being in

state sa:

r̂k(sa) =
1

Nk(sa)

tk≠1ÿ

t=1

rtI{at=a·st,at =sa},

and P̂ k(sa, sÕ
a) is the fraction of times that arm a moved from sa to sÕ

a:

P̂ k(sa, sÕ
a) =

1

Nk(sa)

tk≠1ÿ

t=1

I{at=a·st,at =sa·st+1,at =sÕ
a}.

We design confidence sets similar to [JOA10; BT12].

Lemma 7.5 (High probability events based on concentration argument)

For any k Æ K, let Lk =

Ú

2 ln
1

2SnKk ln(Kk)
1≠“

2

. Let

Ek
H :=

;

’kÕ Æ k:HkÕ Æ ln(Kk)

1 ≠ “

<

(7.17)

Ek
r :=

;

’a œ [n], sa œ Sa, kÕ Æ k:
-
-
-r̂kÕ

(sa)≠r(sa)
-
-
- Æ Lk

2
Ò

max{1, NkÕ(sa)}

<

(7.18)

Ek
P :=

;

’a œ [n], sa œ Sa, kÕ Æ k:
.
.
.P̂ kÕ

(sa, ·)≠P (sa, ·)
.
.
.

¸1

Æ Lk+1.5
Ô

S
Ò

max{1, NkÕ(sa)}

<

(7.19)

Ek
v :=

;

’a œ [n], s œ X , kÕ Æ k:
-
-
-r̂kÕ

(sa)≠r(sa)

+ “
ÿ

sÕœX

1

p̂kÕ

(sÕ | s, a)≠p(sÕ | s, a)
2

vfiú

M (sÕ)
-
-
- Æ Lk

2(1 ≠ “)
Ò

max{1, NkÕ(sa)}

<

(7.20)

128 Chapter 7 Learning Algorithms for Rested Markovian Bandits



Then, the above events are all otk -measurable. Moreover:

P

1

¬Ek
H

2

Æ 1/K

P

1

¬Ek
r

2

Æ 2/K

P

1

¬Ek
P

2

Æ 2/K

P

1

¬Ek
v

2

Æ 2/K.

Proof. For event Ek
H , since {HkÕ

}kÕÆk are i.i.d. and geometrically distributed with

parameter (1 ≠ “), we have that

P

1

÷kÕ Æ k : HkÕ

> ‘
2

Æ
kÿ

kÕ=1

P

1

HkÕ

> ‘
2

= k“Â‘Ê.

Then, with ‘ = ln(1/(Kk))
ln(“) , we get P

1

÷kÕ Æ k : HkÕ

> ‘
2

Æ 1/K. Moreover,

‘ =
ln(1/(Kk))

ln(“)
=

ln(Kk)

ln(1/“)
<

ln(Kk)

1 ≠ “
.

Then, P
1

÷kÕ Æ k : HkÕ

> ln(Kk)
1≠“

2

Æ 1/K.

Let ·k = k ln(Kk)
1≠“

. Under event Ek
H , the random variable tk is upper bounded by the

deterministic quantity ·k. In what follows, we assume that event Ek
H holds.

For event Ek
r , let r̃¸(sa) be a random variable that is the empirical mean of ¸

i.i.d. realizations of the reward when the arm in state sa is chosen. In particu-

lar, r̂k(sa) = r̃Nk(sa)(sa). By Hoeffding’s inequality, for any ‘ > 0, one has:

P (|r̃¸(sa) ≠ r(sa)| Ø ‘) Æ 2e≠2¸‘2
.
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In particular, this holds for ‘ =
Ò

ln(2SnK·k)
2¸

. As Nk(sa) < ·k, by using the union-

bound, this implies that:

P

A

Ek
H · ÷a, sa, kÕ Æ k :

-
-
-r̂kÕ

(sa) ≠ r(sa)
-
-
- Ø

Û

ln(2SnK·k)

2NkÕ(sa)

B

(7.21)

Æ
ÿ

a

ÿ

sa

P

Q

a÷¸ œ {1, . . . , ·k ≠ 1} : |r̃¸(sa) ≠ r(sa)| Ø
Û

ln(2SnK·k)

2¸

R

b

Æ
·k
ÿ

¸=1

ÿ

a

ÿ

sa

P

Q

a|r̃¸(sa) ≠ r(sa)| Ø
Û

ln(2SnK·k)

2¸

R

b

Æ nS
·k
ÿ

¸=1

2e≠2¸
ln(2SnK·k)

2¸ = 1/K,

where the second and third line is the union on all possible events NkÕ

(sa)=¸ for all

¸œ{1, . . . , ·k ≠ 1}. In total this says P
1

Ek
H · ¬Ek

r

2

Æ 1/K. Now, ¬Ek
r =(Ek

H · ¬Ek
r ) ‚

(¬Ek
H · ¬Ek

r ). Then, using union bound,

P

1

¬Ek
r

2

Æ P

1

¬Ek
r · Ek

H

2

+ P

1

¬Ek
r · ¬Ek

H

2

Æ P

1

¬Ek
r · Ek

H

2

+ P

1

¬Ek
H

2

Æ 2/K

The event Ek
P is similar but by using Weissman’s inequality [Wei+03] instead of

Hoeffding’s bound. Indeed, by using Equation (8) in Theorem 2.1 of [Wei+03], if

Nk(sa) was not a random variable, one would have

P

3.
.
.P̂ k(sa, ·)≠P (sa, ·)

.

.

.
¸1

Ø ‘

4

Æ 2Se≠Nk(sa)‘2/2.

Following the same approach as for Equation (7.21) with ‘ =
Ò

2 ln(SnK·k2S)/Nk(sa),

we use the union-bound to show that:

P

A

Ek
H · ÷a, xa, kÕ Æ k :

.

.

.P̂ kÕ

(sa, ·)≠P (sa, ·)
.
.
.

¸1

Ø
Û

2 ln(SnK·k2S)

NkÕ(sa)

B

Æ ·knS2Se
≠NkÕ

(sa)
2 ln(SnK·k2S)

2NkÕ
(sa) = 1/K.

By definition of Lk =
Ò

2 ln(2SnK·k) and since
Ô

x + y Æ Ô
x +

Ô
y, we have

Ò

2 ln(SnK·k2S) =
Ò

2 ln(2SnK·k)+2(S ≠ 1) ln 2

Æ Lk +
Ò

2(S ≠ 1) ln 2 Æ Lk + 1.5
Ô

S.
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Hence:

P

Q

aEk
H · ÷a, sa, kÕ Æ k :

.

.

.P̂ kÕ

(sa, ·) ≠ P (sa, ·)
.
.
.

¸1

Ø Lk + 1.5
Ô

S
Ò

NkÕ(sa)

R

b Æ 1/K.

As done for Ek
r , we have ¬Ek

P =(Ek
H · ¬Ek

P ) ‚ (¬Ek
H · ¬Ek

P ). With the same process,

we get P
1

¬Ek
P

2

Æ 2/K.

For event Ek
v , we have that r̂k + “p̂kvfiú

M is the empirical mean of r + “pvfiú

M . This is

because vfiú

M is deterministic and r̂k and p̂k are empirical mean of r and p respectively.

Using Hoeffding’s inequality and following the same approach above, we have

P

1

¬Ek
v

2

Æ 2/K.

Note that Lemma 7.5 is about the statistical properties of the observations otk in the

observation space. These properties are true for any learning algorithms. In fact, we

will combine different events of this lemma to bound the regret of our algorithm

accordingly.

Concentration Gap

At episode k, our algorithms believe that the unknown MDP M is the MDP Mk. For

Bayesian algorithms, Mk is sampled from posterior distribution while for optimistic

algorithms, Mk is chosen with respect to optimism principle. The algorithms follow

the policy fik that is optimal for Mk. Recall that W fik

M,1:Hk(s) is the expected reward

of the MDP M under policy fik, starts in state s and lasts for Hk time steps and the

expected cumulative discounted reward in M starting from state s under policy fik

is vfik

M (s)=E[W fik

M,1:Hk(s)] where Hk ≥ Geom(1 ≠ “) is the horizon of episode k.

Lemma 7.6 (Gap of concentration)

For episode k, let Bk œ R
+ be an upper bounda of W fik

Mk,1:Hk(s), i.e., a constant

Bk such that for any s œ X , W fik

Mk,1:Hk(s) Æ Bk. We have,

E

Ë

∆
k
conc|otk , Hk, Mk, M

È

=E

Ë

W fik

Mk,1:Hk(stk)≠W fik

M,1:Hk(stk)|otk , Hk, Mk, M
È

ÆE

5 tk+1≠1ÿ

t=tk

-
-
-rk(st,at)≠r(st,at)

-
-
- +Bk

.

.

.P k(st,at , ·)≠P (st,at , ·)
.
.
.

¸1

|otk , Hk, Mk, M

6

(7.22)

aWe will use Bk = Hk for MB-PSRL and MB-UCRL2, and Bk = HkLk/(2(1 ≠ γ)) for
MB-UCBVI.
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Proof. From Equation (7.7) with a = fik(s),

W fik

M,1:Hk(s) = r(sa) +
ÿ

sÕ

p(sÕ | s, a)W fik

M,2:Hk(sÕ). (7.23)

Comparing the sampled MDP Mk with the original M and using Equation (7.23),

one has

W fik

Mk,1:Hk(s)≠W fik

M,1:Hk(s) = rk(sa)≠r(sa)

+
ÿ

sÕ

pk(sÕ | s, a)W fik

Mk,2:Hk(sÕ)≠
ÿ

sÕ

p(sÕ | s, a)W fik

M,2:Hk(sÕ).

(7.24)

Note that in the above equation, the last term is of the form pkW fik

Mk≠pW fik

M , which

is equal to (pk≠p)W fik

Mk+p(W fik

Mk≠W fik

M ). Moreover, W fik
Mk

is less than Bk. Plugging

this to the above equation shows that:

W fik

Mk,1:Hk(s)≠W fik

M,1:Hk(s)

Æ
-
-
-rk(sa)≠r(sa)

-
-
- +Bk

ÿ

sÕ

-
-
-pk(sÕ | s, a)≠p(sÕ | s, a)

-
-
-

+
ÿ

sÕ

p(sÕ | s, a)
1

W fik

Mk,2:Hk(sÕ)≠W fik

M,2:Hk(sÕ)
2

=
-
-
-rk(sa)≠r(sa)

-
-
- +Bk

.

.

.pk(· | s, a)≠p(· | s, a)
.
.
.

¸1

+DMk,M
Hk (s)

+W fik

Mk,2:Hk(s2)≠W fik

M,2:Hk(s2)

where DMk,M
Hk (s):=

q

sÕ p(sÕ | s, a)
1

W fik

Mk,2:Hk(sÕ)≠W fik

M,2:Hk(sÕ)
2

≠(W fik

Mk,2:Hk(s2)≠W fik

M,2:Hk(s2)).

Note that in the equation above, DMk,M
Hk (s) is a martingale difference term with

s2 ≥ p(· | s, a). Hence, the expected value of the martingale difference term is

zero. As only arm a makes a transition, we have
.
.
.pk(· | s, a)≠p(· | s, a)

.

.

.
¸1

=
.
.
.P k(sa, ·)≠P (sa, ·)

.

.

.
¸1

. Hence, a direct induction shows that Equation (7.22) holds.

Bound on the double sum

Recall that for k Æ K, any a œ [n] and any sa œ Sa, Nk(sa) =
qtk≠1

t=1 I{st,at =sa} is the

number of times so far that an arm a was activated in state sa (at episode 1, we have

N1(sa) = 0) and {Hk}kÆK be the sequence of episode horizons.
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Lemma 7.7

For any learning algorithms, we have

Kÿ

k=1

tk+1≠1ÿ

t=tk

1
Ò

max{1, Nk(st,at)}
Æ Sn max

kÆK
Hk + 2

Ú

SnK max
kÆK

Hk

Proof. Let Ñt(sa) be the number of times that arm a has been activated before

time t while being in state sa. By definition, Ñtk(sa) = Nk(sa). Moreover, if

t œ {tk, . . . , tk+1 ≠ 1}, then Ñt(sa) Æ Nk(sa) + Hk. This shows that

Kÿ

k=1

tk+1≠1ÿ

t=tk

1
Ò

max{1, Nk(st,at)}
Æ

Kÿ

k=1

tk+1≠1ÿ

t=tk

1
Ò

max{1, Ñt(st,at) ≠ Hk}

Æ
tK+1≠1ÿ

t=1

1
Ò

max{1, Ñt(st,at) ≠ maxk Hk}
.

The above sum can be reordered to group terms by state: The above sum equals

ÿ

a,sa

Ñ
tK+1 (sa)

ÿ

m=1

1
Ò

max{1, m ≠ maxk Hk}
Æ

ÿ

a,sa

S

W
Umax

k
Hk +

max{1,Ñ
tK+1 (sa)≠maxk Hk}

ÿ

m=1

1Ô
m

T

X
V ,

Æ Sn max
k

Hk +
ÿ

a,sa

Ñ
tK+1 (sa)

ÿ

m=1

1Ô
m

,

Æ Sn max
k

Hk + 2
ÿ

a,sa

Ò

ÑtK+1(sa),

where the last inequality holds because
qtK+1

m=1 1/
Ô

m Æ s tK+1

1 1/
Ô

xdx Æ 2
Ô

tK+1.

Now, by Cauchy-Schwartz inequality, and because
q

a,sa
ÑtK+1(sa) = tK+1≠1=

qK
k=1 Hk,

we have:

ÿ

a,sa

Ò

ÑtK+1(sa) Æ
1 ÿ

a,sa

ÑtK+1(sa)
21/21 ÿ

a,sa

1
21/2

=

ˆ
ı
ı
ÙSn

Kÿ

k=1

Hk Æ
Ú

SnK max
kÆK

Hk.
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Bound on the expectation of E
Ë

maxkÆK Hk
È

Lemma 7.8 (Bound on the expectation of the maximum random horizon)

Let – œ [1, 2.5]. Then,

E

5

max
kÆK

(Hk)–

6

Æ 5 + 5

3
ln K

1 ≠ “

4–

. (7.25)

Proof. By definition, we have

E

5

max
kÆK

(Hk)–

6

=
Œÿ

i=1

P

3

max
kÆK

(Hk)– Ø i

4

Æ
Œÿ

i=1

min(1, KP

1

(Hk)– Ø i
2

)

=
Œÿ

i=1

min(1, K“i1/–

),

where the inequality comes from the union bound, and the last equality is because

the random variables Hk are geometrically distributed.

Let A = min{i : K“i1/– Æ 1}. Decomposing the above sum by group of size A, we

have

Œÿ

i=1

min(1, K“i1/–

) =
Œÿ

j=0

A(j+1)
ÿ

i=Aj+1

min(1, K“i1/–

)

Æ
Œÿ

j=0

A min(1, K“(Aj)1/–

)

= A + A
Œÿ

j=1

K(“A1/–

)j1/–

, (7.26)

where the inequality holds because “i1/–

is decreasing in i.

By definition of A, we have “A1/– Æ 1/K. This implies that the second term of

Equation (7.26) is smaller than
qŒ

j=1 K(1/K)j1/–

=
qŒ

j=1 K1≠j1/–

. As – Æ 2.5, if

K Ø 5, this is smaller than
qŒ

j=1 51≠j1/2.5 ¥ 3.92 < 4.

This shows that for K Ø 5, we have:

E

5

max
kÆK

(Hk)–

6

Æ 5A,

where A = Á(≠ ln K/ ln “)–Ë Æ 1 + (ln K/(1 ≠ “))–.

134 Chapter 7 Learning Algorithms for Rested Markovian Bandits



As for the case where K Æ 4, we have E

Ë

maxkÆK(Hk)–
È

Æ KE
#
(H1)–

$ Æ K
(1≠“)– .

This term is smaller than Equation (7.25) for K Æ 4.

7.A.3 Detailed analysis of MB-PSRL

We decompose the analysis of PSRL in three steps:

• We define the high-probability event Ek
PSRL.

• We analyze
qK

k=1 E

Ë

∆
k
modelI{Ek

PSRL}

È

(which equals 0 here because of posterior

sampling).

• We analyze
qK

k=1 E

Ë

∆
k
concI{Ek

PSRL}

È

.

We will use the same proof structure for MB-UCRL2 and MB-UCBVI.

Before doing the proof, we start by a first lemma that essentially formalizes the fact

that the distribution of M given otk is the same as the distribution of the sampled

MDP Mk conditioned on otk .

Lemma 7.9 (Expectation identity)

Assume that the MDP M is drawn according to the prior „ and that Mk is drawn

according to the posterior „(· | otk). Then, for any otk -measurable function g,

one has:

E [g(M)] = E

Ë

g(Mk)
È

. (7.27)

Proof. At the start of each episode k, MB-PSRL computes the posterior distribution

of M conditioned on the observations otk , and draws Mk from it. This implies that

M and Mk are identically distributed conditioned on otk . Consequently, if g is an

otk -measurable function, one has:

E [g(M) | otk ] = E

Ë

g(Mk) | otk

È

.

Equation (7.27) then follows from the tower rule.
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Definition of the high probability event Ek
PSRL

Lemma 7.10 (High probability event for MB-PSRL)

At episode k, the event

Ek
PSRL =

;

’aœ[n], saœSa, kÕ Æ k:
-
-
-rk(sa)≠r(sa)

-
-
- Æ Lk

Ò

max{1, NkÕ(sa)}
,

.

.

.P k(sa, ·)≠P (sa, ·)
.
.
.

¸1

Æ 2Lk+3
Ô

S
Ò

max{1, NkÕ(sa)}
, and HkÕ Æ ln(Kk)

1 ≠ “

<

is otk -measurable and true with probability at least 1 ≠ 9/K.

Proof. Recall that for MB-PSRL, at the beginning of episode k, we sample an MDP

Mk. We define the two events that are the analogue of the events Equation (7.18)

and Equation (7.19) of Lemma 7.5 but replacing the true MDP M by the sampled

MDP Mk:

Ẽk
r :=

;

’a œ [n], sa œ Sa, kÕ Æ k:
-
-
-r̂kÕ

(sa)≠rk(sa)
-
-
- Æ Lk

2
Ò

max{1, NkÕ(sa)}

<

Ẽk
P :=

;

’a œ [n], sa œ Sa, kÕ Æ k:
.
.
.P̂ kÕ

(sa, ·)≠P k(sa, ·)
.
.
.

¸1

Æ Lk+1.5
Ô

S
Ò

max{1, NkÕ(sa)}

<

These events are otk -measurable. Hence, Lemma 7.9, combined with Lemma 7.5

implies that P
1

¬Ẽk
r

2

= P

1

¬Ek
r

2

Æ 2/K and P

1

¬Ẽk
P

2

= P

1

¬Ek
P

2

Æ 2/K. Since the

complement of Ek
PSRL is the union of ¬Ek

r , ¬Ẽk
r , ¬Ek

P , ¬Ẽk
P and ¬Ek

H , the union bound

implies that P
1

Ek
PSRL

2

Ø 1 ≠ 9/K.

Analysis of E
Ë

∆
k
modelI{Ek

PSRL
}

È

for MB-PSRL

Lemma 7.9 implies that for MB-PSRL, E
Ë

∆
k
modelI{Ek

PSRL}

È

=0 because Ek
PSRL, fik and

Mk are otk -measurable.
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Analysis of E
Ë

∆
k
conc

È

for MB-PSRL

Following Equation (7.12), the Bayesian regret can be written as:

BayesRegret(MB-PSRL, „, K) =
Kÿ

k=1

E

Ë

∆
k
È

Æ
Kÿ

k=1

E

Ë

Hk
È

P

1

¬Ek
PSRL

2

+E

Ë

∆
k
I{Ek

PSRL}

È

Æ 9

(1 ≠ “)
+

Kÿ

k=1

E

Ë

∆
k
modelI{Ek

PSRL}

È

+E

Ë

∆
k
concI{Ek

PSRL}

È

(7.28)

where the last inequality holds due to Lemma 7.10. By the previous section,

the second term of Equation (7.28) is zero. As all rewards are bounded by 1,

W fik

Mk,1:Hk(stk) Æ Hk. Hence, by applying Lemma 7.6 with the upper bound

Bk = Hk, and because I{Ek
PSRL} is deterministic given otk , we have

E

Ë

∆
k
concI{Ek

PSRL}

È

= E

Ë

E

Ë

∆
k
concI{Ek

PSRL} | otk , Hk, Mk, M
ÈÈ

Æ E

5

I{Ek
PSRL}

tk+1≠1ÿ

t=tk

-
-
-rk(st,at)≠r(st,at)

-
-
-

+ Hk
.
.
.P k(st,at , ·)≠P (st,at , ·)

.

.

.
¸1

6

. (7.29)

Let Rk :=
qtk+1≠1

t=tk

-
-
-rk(st,at)≠r(st,at)

-
-
- +Hk

.

.

.P k(st,at , ·)≠P (st,at , ·)
.
.
.

¸1

. By using the

definition of Ek
PSRL, we have:

I{Ek
PSRL}Rk Æ

tk+1≠1ÿ

t=tk

Lk+(2Lk+3
Ô

S)Hk

Ò

max{1, Nk(st,at)}
(7.30)

Hence, summing over all K episodes gives us:

Kÿ

k=1

I{Ek
PSRL}Rk Æ !

LK+(2LK+3
Ô

S) max
kÆK

Hk"
Kÿ

k=1

tk+1≠1ÿ

t=tk

1
Ò

max{1, Nk(st,at)}

Æ 3(LK +
Ô

S) max
kÆK

Hk
Kÿ

k=1

tk+1≠1ÿ

t=tk

1
Ò

max{1, Nk(st,at)}
, (7.31)

where the first inequality holds because Lk Æ LK and maxkÆK Hk Ø 1.
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Note that the last inequality leads to a slightly worst bound but simplifies the

expression. By Lemma 7.7, we get

Kÿ

k=1

I{Ek
PSRL}Rk Æ 3(LK +

Ô
S) max

kÆK
Hk(Sn max

kÆK
Hk + 2

Ú

SnK max
kÆK

Hk)

= 3(LK +
Ô

S)(Sn max
kÆK

(Hk)2 + 2
Ô

SnK max
kÆK

(Hk)3/2)

Then,

Kÿ

k=1

E

Ë

∆
k
concI{Ek

PSRL}

È

Æ3(LK+
Ô

S)

3

SnE

5

max
kÆK

(Hk)2
6

+2
Ô

SnKE

5

max
kÆK

(Hk)3/2
6 4

(7.32)

Æ3(LK+
Ô

S)

3

Sn
1

5+5
1 ln K

1 ≠ “

222
+

Ô
SnK

1

5+5
1 ln K

1 ≠ “

223/2
4

where the last inequality is true due to Lemma 7.8. With LK=

Ú

2 ln
1

2SnK2 ln K2

1≠“

2

,

this implies that there exists a constant C independent of all problem’s parameters

such that:

BayesRegret(MB-PSRL, „, K)ÆC
1Ô

S+ ln
SnK ln K

1 ≠ “

2 3

Sn
1 ln K

1 ≠ “

22
+

Ô
SnK

1 ln K

1 ≠ “

23/2
4

.

Remark on the dependence on S

Our bound is linear in S, the state size of each arm, because our proof follows the

approach used in [ORV13]. Using another proof methodology, it is argued in [OV17]

that the regret of PSRL grows as the square root of the state space size and not

linearly. In our paper, we choose to use the more conservative approach of [ORV13]

because we believe that the proof used in [OV17] is not correct (in particular the

use of a deterministic v in Equation (16) of the proof of Lemma 3 in Appendix A

in the arXiv version of [OV17] seems incompatible with the use of Lemma 4 of

the same paper). In fact, when considering the worst case realization of v, the

concentration bound in Equation (16) of the paper is equivalent to the (scaled) L1

norm of transition concentration. We are not alone to point out this error. Effectively,

[AJ17] used Lemma C.1 and Lemma C.3 (equivalence of Lemma 3 of [OV17]) to

get a bound in square root of the state space size. But both lemmas are erroneous

as mentioned in the latest arXiv version of [AJ17]. The validity of Lemma 3 is also

questioned on page 87 of [Fru19]. While it is informal, the recent work of [Qia+20]

also theoretically contradicts the lemma.
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7.A.4 Case of MB-UCRL2

The proof follows the same steps as for MB-PSRL. While the high probability event

is simpler, the additional complication is to show that
qK

k=1 E

Ë

∆
k
model

È

Æ 0 by using

the optimism principle.

Definition of the high probability event

Lemma 7.11 (High probability event for MB-UCRL2)

At episode k, the event

Ek
UCRL2 =

;

’aœ[n], saœSa, kÕ Æ k:
-
-
-r̂kÕ

(sa)≠r(sa)
-
-
- Æ Lk

2
Ò

max{1, NkÕ(sa)}
,

.

.

.P̂ kÕ

(sa, ·)≠P (sa, ·)
.
.
.

¸1

Æ Lk+1.5
Ô

S
Ò

max{1, NkÕ(sa)}
, and HkÕ Æ ln(Kk)

1 ≠ “

<

is otk -measurable and true with probability at least 1 ≠ 5/K.

Proof. The complement of Ek
UCRL2 is the union of ¬Ek

r , ¬Ek
P and ¬Ek

H . We conclude

the proof by using the union bound and P

1

¬Ek
r

2

Æ 2/K, P
1

¬Ek
P

2

Æ 2/K and

P

1

¬Ek
H

2

Æ 1/K.

Analysis of E
Ë

∆
k
modelI{Ek

UCRL2
}

È

– Optimism of MB-UCRL2

Recall that fiú is the optimal policy of the unknown MDP M and that fik is the policy

used in episode k. fik is optimal for the optimistic MDP that is chosen from the

plausible MDP set Mk:

fik œ arg max
fi

max
M ÕœMk

vfi
M Õ .

For each episode k, the plausible MDP set Mk is defined by

M
k =

;

(rÕ,P Õ) : ’a, sa,
-
-
-rÕ(xa) ≠ r̂k(sa)

-
-
- Æ Lk

2
Ò

max{1, Nk(sa)}
, and

.

.

.P Õ(sa, ·) ≠ P̂ k(sa, .)
.
.
.

¸1

Æ Lk + 1.5
Ô

S
Ò

max{1, Nk(sa)}

<

. (7.33)
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As [JOA10], we argue that there exists an MDP Mk œ M
k such that fik is an optimal

policy for Mk. Moreover, under event Ek
UCRL2, one has M œ M

k, which implies

that maxfi maxM ÕœMk vfi
M Õ(s) Ø vfiú

M (s). By Equation (7.13), we get E
Ë

∆
k
model

È

Æ0.

If Ek
UCRL2 does not hold, we simply have ∆

k
modelI{Ek

UCRL2} = 0. We conclude that:

E

Ë

∆
k
modelI{Ek

UCRL2}

È

Æ0.

Analysis of E
Ë

∆
k
concI{Ek

UCRL2
}

È

for MB-UCRL2

Following Equation (7.12), the expected regret can be written as:

E [Regret(MB-UCRL2, M, K)] =
Kÿ

k=1

E

Ë

∆
k
È

Æ
Kÿ

k=1

E

Ë

Hk
È

P

1

¬Ek
UCRL2

2

+E

Ë

∆
k
I{Ek

UCRL2}

È

Æ 5

1 ≠ “
+

Kÿ

k=1

E

Ë

∆
k
modelI{¬Ek

UCRL2}

È

+E

Ë

∆
k
concI{¬Ek

UCRL2}

È

(7.34)

where the last inequality holds due to Lemma 7.11. By the previous section, the

second term of Equation (7.34) is non-positive. In the following, we therefore

analyze the last term whose analysis is then similar to the one for MB-PSRL. Indeed,

with Bk = Hk and definition of Ek
UCRL2, the use of Lemma 7.6 shows that one has

E

Ë

∆
k
concI{Ek

UCRL2}

È

Æ E

S

U
1

2

tk+1≠1ÿ

t=tk

Lk+(2Lk+3
Ô

S)Hk

Ò

max{1, Nk(st,at)}

T

V .

Up to a factor 1/2, the expression inside the expectation is the same as Equa-

tion (7.30) of MB-PSRL. Hence, one can use Lemma 7.7 the same way to show

that

Kÿ

k=1

E

Ë

∆
k
concI{Ek

UCRL2}

È

Æ 3

2
(LK +

Ô
S)

3

SnE

5

max
kÆK

(Hk)2
6

+ 2
Ô

SnKE

5

max
kÆK

(Hk)3/2
6 4

.

Up to a factor 1/2, the right term of the above equation is equal to the right term of

Equation (7.32). Following the same process done for the latter, we can conclude

that there exists a constant C Õ independent of all problem’s parameters such that:

Regret(MB-UCRL2, M, K) Æ C Õ
1Ô

S+ ln
SnK ln K

1 ≠ “

2 3

Sn
1 ln K

1 ≠ “

22
+

Ô
SnK

1 ln K

1 ≠ “

23/2
4

.
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7.A.5 Case of MB-UCBVI

We start by defining the high probability event. Then, we prove the optimistic

property of MB-UCBVI. Finally, we bound its expected regret.

Definition of the high-probability event

Lemma 7.12 (High probability event for MB-UCBVI)

The event
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is otk -measurable and true with probability at least 1 ≠ 7/K.

Proof. The complement of Ek
UCBVI is the union of ¬Ek

r , ¬Ek
P , ¬Ek

H and ¬Ek
v . We

conclude the proof by using the union bound and P
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Analysis of E
Ë
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modelI{Ek
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È

– Optimism of MB-UCBVI

The following lemma guarantees that E
Ë

∆
k
modelI{Ek
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È

Æ 0. Indeed, as Ek
UCBVI is

otk -measurable, one has
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Lemma 7.13 (Optimism of MB-UCBVI)

If Ek
UCBVI holds, then for any s œ X , we have

vfik

Mk(s) Ø vfiú

M (s)

Proof. Recall that at episode k, we define the optimistic MDP of MB-UCBVI by Mk in

which the parameters of any arm a œ [n] are (r̂k
a+—k, P̂ k

a ) with —k(sa)= Lk

2(1≠“)
Ô

max{1,Nk(sa)}

for any sa œ Sa. The Gittins index policy fik is optimal for MDP Mk. For any state s,

let a = fik(s) and aú = fiú(s). Then,
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M (s) = —k(sa) + r̂k(sa) + “
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Let (rfi, P fi) be the reward vector and transition matrix under policy fi (i.e. ’s, sÕ œ
X , rfi(s) = r(sfi(s)), P fi(s, sÕ) = p

1

sÕ | s, fi(s)
2

as defined in Equation (7.1)). In

matrix form, the above equations

vfik

Mk ≠ vfiú
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+ (r̂k)fiú ≠ rfiú

+“
1

(P̂ k)fiú≠P fiú
2

vfiú

M + “(P̂ k)fiú

(vfik

Mk ≠ vfiú

M ).

Under event Ek
UCBVI, (—k)fiú

+ (r̂k)fiú ≠ rfiú

+“
1

(P̂ k)fiú≠P fiú
2

vfiú

M Ø 0. This implies

that:

1

I ≠ “(P̂ k)fiú
2

(vfik

Mk ≠ vfiú

M ) Ø 0.

As
1

I ≠ “(P̂ k)fiú
2≠1

= I +
1

I ≠ “(P̂ k)fiú
2

+
1

I ≠ “(P̂ k)fiú
22

+ . . . is a matrix whose

coefficients are all non-negative, this implies that vfik

Mk ≠ vfiú

M Ø 0.
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Analysis of E
Ë

∆
k
concI{Ek

UCBVI
}

È

for MB-UCBVI

Following Equation (7.12), the expected regret can be written similarly to Equa-

tion (7.34) for MB-UCRL2, one can write that
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.

The same as MB-UCRL2, the second term is non-positive. We are therefore left

with the last term. Using Lemma 7.6 with Bk = HkLk

2(1≠“) and the definition of Mk for

MB-UCBVI, we have:
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where the second inequality holds due to the definition of Ek
UCBVI and the last one

holds due to Lemma 7.7. With LK=
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The last term of the right side above can be analyzed exactly the same as what is

done for Equation (7.32) using Lemma 7.8. This concludes the proof.

Remark on the dependence on S

In the analysis of UCBVI and in our analysis, one need to bound the last term of

Equation (7.24) which is of the form pkW fik

Mk ≠ pW fik

M . [AOM17] rewrite this term

as (pk ≠p)W fiú

M +(pk ≠p)(W fik

Mk ≠W fiú

M )+p(W fik

Mk≠W fik

M ). They then bound the first
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term by Chernoff-Hoeffding’s inequality because the optimal value of the unknown

MDP is deterministic. The second term, called the "correction" term, is bounded

by using Bernstein’s inequality and the optimism [AOM17, Step 1, page 6]. The

third term is bounded by using the inequalities for martingale difference sequences.

This allows the authors to have a factor
Ô

S (instead of the classical S) in the regret

bound.

If the technique to deal with the first and third terms would also apply to our case, the

analysis of the second term uses heavily the optimism and the fact that W fik

Mk Ø W fiú

M

in their setting. This cannot be adapted for MB-UCBVI because the optimism implies

that vfik

Mk Ø vfiú

M but we do not necessarily have W fik

Mk,h:Hk(sÕ) Ø W fiú

M,h:Hk(sÕ) for all

sÕ œ X , all h œ [Hk] and all k. This is because we might lose the optimism when

working with the value function over random episode length. That is why we need

to use Lemma 7.6 which is more conservative.

7.B Proof of Theorem 7.3

To prove the lower bound, we consider a specific Markovian bandit problem that is

composed of S independent stochastic bandit problems. This allows us to reuse the

existing minimax lower bound for stochastic bandit problems. This existing result

can be stated as follows: let Lstoc.pb be a learning algorithm for the stochastic bandit

problem. It is shown in Theorem 3.1 of [BC12] that for any number of arms n and

any number of time steps · , there exists parameters for a stochastic bandit problem

M stoc.pb with n arms such that the regret of the learning algorithm over · time steps

is at least (1/20)
Ô

n· .

Regretstoc.pb(·, Lstoc.pb, M stoc.pb) Ø 1

20

Ô
n· . (7.35)

This lower bound (Theorem 3.1 of [BC12]) is constructed by considering n stochastic

bandit problems M stoc.pb,j for j œ [n] with parameters that depend on · and n. In

the problem M stoc.pb,j , all arms have a reward ◊(·, n) except arm j that has a reward

◊Õ(·, n) > ◊(·, n). It is shown in Theorem 3.1 of [BC12] that a learning algorithm

cannot perform uniformly well on all problems because it is impossible to distinguish

them a priori. More precisely, in the proof of Lemma 3.2 of [BC12], it is shown

that if the best arm is chosen at random, then the expected (Bayesian) regret of any

learning algorithm is at least (1/20)
Ô

n· .

As for our problem, let K be a number of episodes, “ a discount factor, n a number

of arms, S a number of states per arm and set · = K/(2S(1 ≠ “)). We consider

144 Chapter 7 Learning Algorithms for Rested Markovian Bandits



a random Markovian bandit model M constructed as follows. Each arm a has S

states with the state space Sa = {1a, 2a, . . . , Sa}. The transition matrix Pa is the

identity matrix. For each state i œ {1, . . . , S}, we choose the best arm aú
i uniformly

at random among the n arms, independently for each i. The rewards of a state ia

are i.i.d. Bernoulli rewards with mean ◊(·, n) if a ”= aú
i and ◊Õ(·, n) if a = aú

i . The

initial distribution fl couples the initial states of all arms for all i œ {1, . . . , S},

P (’a œ [n] : s1,a = ia) =
1

S
.

In this case, the Markovian bandit problem becomes a combination of S independent

stochastic bandit problems with n arms each. We denote by M stoc.pb
i the random

stochastic bandit problem for the initial state i = (ia)aœ[n]. As the best arm aú
i are

chosen independently for each i, a learning algorithm L cannot use the information

from M stoc.pb
i to perform better on M stoc.pb

j , j ”= i.

Let „ be the distribution of the random Markovian bandit model M defined above

and let Ti be the number of time steps spent in state i by the learning algorithm

L.

BayesRegret(L, „, K) Ø
Sÿ

i=1

E

Ë

Regretstoc.pb(Ti, Lstoc.pb
i , M stoc.pb

i )
È

Ø
Sÿ

i=1

E

Ë

Regretstoc.pb(·, Lstoc.pb
i , M stoc.pb

i )I{TiØ·}

È

(7.36)

Ø S

20

Ô
n·P (Ti Ø ·) (7.37)

=
1

20

Û

SnK

2(1 ≠ “)
P (Ti Ø ·) , (7.38)

where Equation (7.36) is true because the expected regret is non-decreasing func-

tion of the number of episodes, Equation (7.37) comes from Equation (7.35) and

Equation (7.38) from the definition of · .

We show in the Lemma 7.14 below that P (Ti Æ K/(2S(1 ≠ —))) Æ 8S/K. This

shows that for K Ø 16S, one has P (Ti Ø ·) Ø 1/2. This concludes the proof as

40
Ô

2 Æ 60.

Lemma 7.14

Recall that Ti is the number of time steps that the MDP is in state i for the MDP

model above. Let Gk be a sequence of i.i.d. Bernoulli random variable of mean
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1/S and let Hk be an independent i.i.d. sequence of geometric random variable

of parameter 1 ≠ —. Then:

(i) Ti ≥ qK
k=1 GkHk,

(ii) E [Ti] = K/(S(1 ≠ —)),

(iii) P (Ti Ø E [Ti] /2) Ø 1 ≠ 8S/K.

Proof. Let Gk be a random variable that equals 1 if the initial state i is chosen at

the beginning of episode k and recall that Hk is the episode length. By definition,

the variables Gk and Hk are independent and follow respectively Bernoulli and

geometric distribution. This shows (i).

Let Wk = GkHk. As the Wk are i.i.d. and Gk and Hk are independent, we have:

E [Ti] = KE [H1G1] =
K

S(1 ≠ —)
.

This shows (ii).

Moreover, V [Ti] = KV [H1G1]. Hence, by using Chebyshev’s inequality, one has:

P

3

Ti Æ E [Ti]

2

4

Æ P

3

ÎTi ≠ E [Ti]Î Ø E [Ti]

2

4

Æ 4V [Ti]

(E [Ti])2

=
4

K

V [H1G1]

(E [H1G1])2
.

Concerning the variance, the second moment of a geometric random variable of

parameter 1 ≠ — is (1 + —)/(1 ≠ —)2. This shows that E
#
(H1G1)2

$
= (1 + —)/(S(1 ≠

—)2) Æ 2S(E [H1G1])2. This implies:

V [H1G1] Æ (2S ≠ 1)(E [H1G1])2 Æ 2S(E [H1G1])2.

This implies (iii).
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A1 A2 A3

+3 +4 +0
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0.5 1

1

B1 B2 B3

+3.21 +0 +3.21

1

1 1

C1

+µ

1

(a) P̂a and r̂a = ra. (b) P̂b = Pb and r̂b = rb. (c) P̂c = Pc and r̂c = rc.

Figure 7.2.: Counterexample for OFU indices: B̂a, B̂b = Bb, B̂c = Bc.

7.C Proof of Theorem 7.4

In this proof, we reason by contradiction and assume that there exists a procedure

that computes local indices such that the obtained policy is such that for any estimate

B̂ and any initial condition fl, then if M œ M(B̂), one has

sup
MœM(B̂)

vfiI(B̂)

M (fl) Ø sup
fi

vfi
M (fl). (7.39)

In the remaining of this section, we set the discount factor to “ = 0.5. For a

given state sa, we denote by I(sa) the local index of state sa computed by this

hypothetically optimal algorithm.

We first consider a Markovian bandit problem with two arms {b, c}. We consider that

these two arms are perfectly estimated (i.e., —r(sb) = —P (sb) = —r(sc) = —P (sc) = 0

for any sb, sc). The Markov chains for these arms are depicted in Figure 7.2. Their

transitions matrices and rewards are

Pb =

S

W
W
U

0 1 0

0 1 0

0 0 1

T

X
X
V

and rb = [3.21, 0, 3.21]; Pc = [1] and rc = [µ].

As the Markovian bandit are perfectly known, the indices I(B1), I(B2), I(B3) and

I(C1) must be such that the obtained priority policy is optimal for the true MDP,

that is: states B1 and B3 should have priority over C1 (i.e., I(B1) > I(C1) and

I(B3) > I(C1)) if and only if µ < 3.21, and state B2 should have priority over C1

(i.e., I(B2) > I(C1)) if and only if µ < 0 where µ is the reward incurred in state C1.

This implies that the local indices defined by our hypothetically optimal algorithm

must satisfy

I(B1) = I(B3) > I(B2).
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Now, we consider Markovian bandit problems with two arms {a, b}, where Arm b is

as before. For Arm a, we consider a confidence set for B̂a := (r̂a, P̂a, —r, —P ) where

(r̂a, P̂a) are depicted in Figure 7.2(a) and where —r(sa) = 0 and —P (sa) = 0.1:

P̂a =

S

W
W
U

0.5 0.5 0

0 0 1

0 0 1

T

X
X
V

and r̂a = ra = [3, 4, 0] —P = [0.1, 0.1, 0.1] and —r = [0, 0, 0].

We consider two possible instances of the “true” Markovian bandit problem, denoted

M1 and M2. For M1, the transition matrix and reward function of the first arm are

depicted in Figure 7.3(a). For M2, they are depicted in Figure 7.3(b). In both cases,

(rb,Pb) are as in Figure 7.2(b). It should be clear that M1 œ M and M2 œ M.

A1 A2 A3

+3 +4 +0

0.4

0.6 1

1

A1 A2 A3

+3 +4 +0

0.6

0.4

0.1
0.9

0.9
0.1

(a) (ra,Pa) for M1 (b) (ra,Pa) for M2

Figure 7.3.: The two instances Ba1 and Ba2 of Ba.

If there exist indices that can be computed locally, then the indices for an arm should

not depend on the confidence that one has on the other arms. The indices I(A1),

I(A2) and I(A3) must satisfy the following facts:

• I(A3) œ (I(B2), I(B3)) because for all Markovian bandit M œ M, state A3

should have priority over state B2 and should not have priority over state B3

(because of the discount factor “ = 1/2).

• I(A2) > I(B1) = I(B3) because for all Markovian bandit M œ M, state A2 will

give a higher instantaneous reward than state B1 or B3. It should therefore

have a higher priority.

This leaves two possibilities for I(A1):

• If I(A1) > I(B1) = I(B3), then state A1 has priority over both B1 and B3. We

denote the corresponding priority policy fi1.

• If I(A1) < I(B1) = I(B3), then state B1 and B3 have a higher priority than

state A1. We denote the corresponding priority policy by fi2.
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We use a numerical implementation of extended value iteration2 to find that:

sup
MœM

V fi2
M (A1, B3) ¥ 6.42 < sup

fi
V fi

M1
(A1, B3) ¥ 6.47

sup
MœM

V fi1
M (A1, B1) ¥ 5.96 < sup

fi
V fi

M2
(A1, B1) ¥ 6.00

This implies that there does not exist any definition of indices such that Equa-

tion (7.10) holds regardless of M and s.

7.D Description of the Algorithms and Choice of

Hyperparameter

In this section, we provide a detailed description of the simulation environment

used in the paper. We first describe the Markov chain used in our example. Then,

we describe all algorithms that we compare in the paper. For each algorithm, we

give some details about our choice of hyperparameters. Last, we also describe the

experimental methodology that we used in our simulations.

7.D.1 Description of the example

We design an environment with 3 arms, all following a Markov chain represented in

Table 7.1. This Markov chain is obtained by applying the optimal policy on the river

swim MDP of [FCG10]. In each chain, there are 2 rewarding states: state 1 with

low mean reward rL, and state 4) with high mean reward rR, both with Bernoulli

distributions. At the beginning of each episode, all chains start in their state 1. Each

chain is parametrized by the values of pL, pR, pRL, rL, rR that are given in Table 7.1

along with the corresponding Gittins indices of each chain.

7.D.2 MB-PSRL

MB-PSRL, the adaption from PSRL, puts prior distribution on the parameters (ra,Pa)

of each Arm a, draws a sample from the posterior distribution and uses it to compute

the Gittins indices at the start of each episode. We implement two posterior updates

for the mean reward vector ra: Beta and Gaussian-Gamma. The second posterior,

2available at https://gitlab.inria.fr/kkhun/learning-in-rested-markovian-bandit
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Gittins index for each state
pL pR pRL rL rR 1 2 3 4
0.1 0.2 0.3 0.2 1.0 0.276 0.2894 0.392 1.0
0.1 0.5 0.7 0.35 0.7 0.35 0.256 0.2892 0.7
0.1 0.4 0.5 0.4 0.65 0.4 0.250 0.286 0.65

Table 7.1.: The random walk chain with 4 states. In state 4, the chain has an average
reward rR. For state 2 and 3, the chain gives zero reward. In state 1, the
mean reward is rL. This chain is obtained by applying the optimal policy on
the 4-state river swim MDP of [FCG10]. The table contains the parameters
that we used, along with Gittins indices of all states when the discount factor is
“ = 0.99.

Gaussian-Gamma, will be used in prior choice sensitivity tests. For the transition

matrix Pa, we implemented Dirichlet posterior update because Dirichlet distribution

is the only natural conjugate prior for categorical distribution. Beta, Gaussian-

Gamma and Dirichlet distributions can be easily sampled using the numpy package

of Python. This greatly contributes to the computational efficiency of MB-PSRL.

We give more details on this prior distribution and their conjugate posterior in the

subsections below.

Bayesian Updates: Conjugate Prior and Posterior Distributions

MB-PSRL is a Bayesian learning algorithm. As such, it samples reward vectors

and transition matrices at the start each episode. We would like to emphasize that

neither the definition of the algorithm nor its performance guarantees that we prove

in Theorem 7.2 depend on a specific form of the prior distribution „. Yet, in practice,

some prior distributions are more preferable because their conjugate distributions

are easy to implement. In the following, we give concrete examples on how to

update the conjugate distribution given the observations.

For a œ [n] and sa œ Sa, let Nk(sa) be the number of activations of arm a while in

state sa up to episode k. For this state sa, the number of samples of the reward and

of transitions from sa are equal to Nk(sa). To ease the exposition, we drop the label

a and assume that we are given:

• Nk(s) i.i.d. samples {Y1, . . . , YNk(s)} of next states to which the arm transi-

tioned from s.
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• Nk(s) i.i.d. samples {R1, . . . , RNk(s)} of random immediate rewards earned

while the arm was activated in state s

Each Yi is such that P (Yi = sÕ) = P (s, sÕ) and each Ri is such that E [Ri] = r(s). In

what follows, we describe natural priors that can be used to estimate the transition

matrix and the reward vector.

Transition Matrix

If no information is known about the arm, the natural prior distribution is to

consider the lines P (s, ·) of the matrix as independent multivariate random vari-

ables uniformly distributed among all non-negative vectors of length S that sum

to 1. This corresponds to a Dirichlet distribution of parameters – = (1 . . . 1).

For a given s, the variables {Y1, . . . , YNk(s)} are generated according to a cate-

gorical distribution P (s, ·). The Dirichlet distribution is self-conjugate with re-

spect to the likelihood of a categorical distribution. So, the posterior distribution

„(P (s, ·)|Y1, . . . , YNk(s)) is a Dirichlet distribution with parameters c = (c1 . . . cS)

where cÕ
s = 1 +

qNk(s)
i=1 I{Yi=sÕ}.

Reward Distribution

As for the reward vector, the choice of a good prior depends on the distribution of

rewards. We consider two classical examples: Bernoulli and Gaussian.

Bernoulli distribution A classical case is to assume that the reward distribution

of a state s is Bernoulli with mean value r(s). A classical prior in this case is to

consider that {r(s)}{sœS} are i.i.d. random variables following a uniform distribution

whose support is [0, 1]. The posterior distribution of r(s) at time t is the distribution

of r(s) conditional to the reward observations from state s gathered up to time t.

The posterior distribution „(r(s) | R1, . . . , RNk(s)) is then a Beta distribution with

parameters (1+
qNk(s)

i=1 I{Ri=1}, 1+
qNk(s)

i=1 I{Ri=0}). Recall that the Beta distribution

is a special case of the Dirichlet distribution in the same way as the Bernoulli

distribution is a special case of the Categorical distribution.
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Gaussian distribution We now consider the case of Gaussian rewards, and we

assume that the immediate rewards earned in state s are i.i.d. Gaussian random

variables of mean and variance (r(s), ‡2(s)). A natural prior for Gaussian rewards is

to consider that (r(s), 1
‡2(s)

) are i.i.d. bivariate random variables where the marginal

distribution of each 1
‡2(s)

is a Gamma distribution (it is a natural belief since the

empirical variance of Gaussian has a chi-square distribution which is a special case

of Gamma distribution). Conditioned on 1
‡2(s)

, r(s) follows a Gaussian distribution

of variance ‡2(s). We say that (r(s), 1
‡2(s)

) has a Gaussian-Gamma distribution,

which is self-conjugate with respect to a Gaussian likelihood (i.e., the likelihood of

Gaussian rewards). So, given the reward observations, the marginal distribution

of 1
‡2(s)

is still a Gamma distribution. r(s) has Gaussian distribution conditioned

on the reward observations and 1
‡2(s)

. Indeed, let r̂(s) = 1
Nk(s)

qNk(s)
i=1 Ri and

‡̂2(s) = 1
Nk(s)

qNk(s)
i=1 (Ri ≠ r̂(s))2 be the empirical mean and empirical variance of

Ri. Then it can be shown that the posterior distribution of 1
‡2(s)

and r(s) are:

1

‡2(s)
| R1, . . . , RNk(s)≥Gamma

3
Nk(s)+1

2
,
1

2
+

Nk(s)‡̂2(s)

2
+

Nk(s)r̂2(s)

2(Nk(s)+1)

4

r(x) |
1

‡2(x)
, R1, . . . , RNk(x)≥N

A

Nk(s)r̂(s)

Nk(s) + 1
,

‡2(s)

Nk(s) + 1

B

.

For more details about the analysis of conjugate prior and posterior presented above

as well as more conjugate distributions, we refer the reader to [Fin97; Mur07].

Notice that a reward that has a Gaussian distribution violates the property that all

rewards are in [0, 1]. This could invalidate the bound on the regret of our algorithm

proven in Theorem 7.2. Actually, it is possible to correct the proof to cover the

Gaussian case by replacing the Hoeffding’s inequality used in Lemma 7.5 by a

similar inequality, also valid for sub-Gaussian random variables, see [Ver18]. In

the experimental section (see 7.E.3), we also show that a bad choice for the prior

distribution of the reward (assuming a Gaussian distribution while the rewards

are actually Bernoulli) does not alter too much the performance of the learning

algorithm.

7.D.3 Experimental Methodology

In our numerical experiment, we did 3 scenarios to evaluate the algorithms (scenario

2 and 3 are given in Appendix 7.E). In each scenario, we choose the discount factor

“ = 0.99 (which is classical) and we compute the regret over K = 3000 episodes.

The number of simulations varies over scenario depending on how the regret is
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computed. For each run, we draw a sequence of horizons {Hk}kœ[3000] from a

geometric distribution of parameter 0.01, and we run all algorithms for this sequence

of time-horizons to remove a source of noise in the comparisons.

For a given sequence of policies fik, following Equation (7.3), the expected regret is

E

Ë
qK

k=1 ∆
k(stk)

È

where ∆
k(stk) is the expected regret over episode k. To reduce

the variance in the numerical experiment, we compute ∆
k(stk) = vfiú

M (stk)≠vfik

M (stk).

For a given Markovian bandit problem and state s, the value vfiú

M (s) can be computed

by using the retirement evaluation presented in Page 272 of [Whi96]. It seems,

however, that the same methodology is not applicable to compute the value function

of an index policy that is not the Gittins policy. This means that while the policy fik

is easily computable, we do not know of an efficient algorithm to compute its value

vfik

M (s). Hence, in our simulations, we will use two methods to compute the regret,

depending on the problem size:

1. (Exact method) Let (rfi, P fi) be the reward vector and transition matrix under

policy fi (i.e. ’s, sÕ œ X , rfi(s) = r(s, fi(s)), P fi(s, sÕ) = P fi(s)(s, sÕ) as defined

in Equation (7.1)). Using the Bellman equation, the value function under

policy fi is computed by

vfi
M = (I ≠ “P fi)≠1rfi. (7.40)

The matrix inversion can be done efficiently with the numpy package of Python.

However, this takes S2n + 2Sn of memory storage. Hence, when the number

of states and arms are too large, the exact computation method cannot be

performed.

2. (Monte Carlo method) In Scenario 2, the model has n = 9 arms with S = 11

states each, which makes the exact method inapplicable. In this case, it

is still possible to compute the optimal policy and to apply Gittins index

based algorithms but computing their value is intractable. In such a case, to

measure the performance, we do 240 simulations for each algorithm and try

to approximate ∆
k by

∆̂
k =

1

#replicas

#replicas
ÿ

j=1

Hk,(j)
ÿ

t=1

Ë

r(s
ú,(j)

t,a
ú,(j)
t

) ≠ r(s
(j)

t,a
(j)
t

)
È

, (7.41)

where Hk,(j) is the horizon of the kth episode of the jth simulation and

{s
ú,(j)

t,a
ú,(j)
t

} and {s
(j)

t,a
(j)
t

} are the trajectories of the oracle and the agent respec-

tively. The term oracle refers to the agent that knows the optimal policy

fiú.
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Note that the expectation of Equation (7.41) is equal to the value given in Equa-

tion (7.40) but Equation (7.41) has a high variance. Hence, when applicable

(Scenario 1 and 3) we use Equation (7.40) to compute the expected regret.

7.E Additional Numerical Experiments

7.E.1 Scenario 1: Small Dimensional Example (Random Walk

chain)

This scenario is explained in Appendix 7.D.1 and the main numerical results are

presented in Section 6.7. Here, we provide the result with error bars with respect

to the random seed. In Figure 7.4, the error bar size equals twice the standard

deviation over 80 samples (each sample is a simulation with a given random seed

and the random seeds are different for different simulations).

Figure 7.4.: Average cumulative regret in function of the number of episodes. Result from
80 simulations in a Markovian bandit problem with three 4-state random walk
chains given in Table 7.1. The horizontal axis is the number of episodes. The
size of the error bar equals twice the standard deviation over 80 simulations.

7.E.2 Scenario 2: Higher Dimensional Example (Task Scheduling)

We now study an example that is too large to apply MB-UCRL2 . Hence, here we

only compare MB-PSRL and MB-UCBVI.
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We implement the environment proposed on page 19 of [Duf95] that was used

as a benchmark for the algorithm in the cited paper. Each chain represents a

task that needs to be executed, and is represented in Figure 7.5(a). Each task

has 11 states (including finished state ı that is absorbing). For a given chain

a œ {1, . . . , 9} and a state i œ {1, . . . , 10}, the probability that a task a ends at state i

is fl
(a)
i = P

1

· (a) = i | · (a) Ø i
2

where · (a) is the execution time of task a. We choose

the same values of the parameters as in [Duf95]: fl
(a)
1 = 0.1a for a œ {1, . . . , 9},

⁄ = 0.8, “ = 0.99 and for i Ø 2,

P{sa = i} =
Ë

1 ≠ [1 ≠ fl
(a)
1 ]⁄i≠1

È

[1 ≠ fl
(a)
1 ]i≠1⁄

(i≠1)(i≠2)
2 .

Hence, the hazard rate fl
(a)
i is increasing with i. The reward in this scenario is

deterministic: the agent receives 1 if the task is finished (i.e., under the transition

from any state i to state ı) and 0 otherwise (i.e., any other transitions including the

one from state ı to itself). For MB-PSRL, we use a uniform prior for the expected

rewards and consider that the rewards are Bernoulli distributed.

(a) In state i, the task is finished with
probability fli or transitions to state i + 1
with probability 1 ≠ fli. For i = 1, . . . , 10,
the transition from state i to state ı

provides 1 as the immediate reward.
Otherwise, the agent always receives 0
reward.

(b) Average cumulative regret
over 240 simulations.

Figure 7.5.: Task Scheduling with 11 states including the absorbing state (finished state).

The average regret of the two algorithms is displayed in Figure 7.5(b). As before,

MB-PSRL outperforms MB-UCBVI. Note that we also studied the time to run one

simulation for 3000 episodes. This time is around 1 min for MB-PSRL and MB-

UCBVI.
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7.E.3 Scenario 3: Bayesian Regret and Sensitivity to the Prior

In this section, we study how robust the two implementations of PSRL are, namely

MB-PSRL and vanilla PSRL (to simplify, we will just call the latter PSRL), to a choice

of prior distributions. As explained in Appendix 7.D.2, the natural conjugate prior

for Bernoulli reward is the Beta distribution. In this section, we simulate MB-PSRL

and PSRL in which the rewards are Bernoulli but the conjugate prior used for the

rewards are Gaussian-Gamma which is incorrect for Bernoulli random reward. In

other words, MB-PSRL and PSRL have Gaussian-Gamma prior belief while the real

rewards are Bernoulli random variables.

To conduct our experiments, we use a Markovian bandit problem with three 4-state

random walk chains represented in Table 7.1. We draw 16 models by generating 16

pairs of (rL, rR) from U [0, 1], 16 pairs of (pL, pR) from Dirichlet(3,(1,1,1)) and 16

values of pRL from Dirichlet(2, (1,1)) for each chain. Each model is an unknown

MDP that will be learned by MB-PSRL or PSRL. For each of these 16 models, we

simulate MB-PSRL and PSRL 5 times with correct priors and 5 times with incorrect

priors. The result can be found in Figure 7.6 which suggests that MB-PSRL performs

better when the prior is correct and is relatively robust to the choice of priors in

terms of Bayesian regret. This figure also shows that PSRL seems more sensitive to

the choice of prior distribution. Also note that for both MB-PSRL and PSRL, some

trajectories deviate a lot from the mean, under correct priors but even more so with

incorrect priors. This illustrates the general fact that learning can go wrong, but

with a small probability.

7.F Experimental environment

The code of all experiments is given in a separated zip file that contains all necessary

material to reproduce the simulations and the figures.

Our experiments were run on HPC platform with 1 node of 16 cores of Xeon E5. The

experiments were made using Python 3 and Nix and submitted as supplementary

material and will be made publicly available with the full release of the paper.

The package requirement is detailed in README.md. Using only 1 core of Xeon

E5, the Table 7.2 gives some orders of duration taken by each experiment (with

discount factor “ = 0.99, and 3000 episodes per simulation). We would like to

draw two remarks. First, the duration reported in Figure 7.1b is the time for policy

computation (algorithm’s parameters update and policy computation). The duration
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(a) Correct Prior (b) Incorrect Prior (c) Bayesian Regret

Figure 7.6.: Bayesian regret of MB-PSRL and vanilla PSRL in 3 4-state Random Walk chains.
For each chain, we draw 16 random models and run the algorithms for 5
simulations in each model (there are 80 simulations in total). In panels (a)
and (b), we plot 16 dotted lines that correspond to the average cumulative
regret over 5 simulations in the 16 samples. The solid and dash-dot lines are
the average regret each over 80 simulations (the estimated Bayesian regret).
Figure 7.6a shows the performance when reward prior is well-chosen (namely,
U([1, 1])). Figure 7.6b is when the reward prior is incorrectly chosen (namely
Gaussian-Gamma distribution). Figure 7.6c compares the Bayesian regret of
the correct prior with the incorrect one (dash-dot line). In both case, the prior
of next state transition is well-chosen (namely, Dirichlet distribution). Y-axis
range changes for each figure.

reported in Table 7.2 includes this plus the computation time for oracle (because we

track the regret), the state transition time along the trajectories of oracle and of each

algorithm, resetting time... This explains why the duration reported in Table 7.2

cannot be compared to the duration reported in Figure 7.1b. Second, the duration

shown in Table 7.2 are meant to be a rough estimation of the computation time (we

only ran the simulation once and the average duration might fluctuate).
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Experiment MB-PSRL PSRL MB-UCRL2 MB-UCBVI Total
Scenario 1 40 min - 6 days 50 min 6 days
Scenario 2 200 min - - 200 min 400 min
Scenario 3 90 min 260 min - - 350 min

Table 7.2.: Approximative execution time for simulating each algorithm and tracking its
regret in each scenario. This time includes the time given in Figure 7.1b and
the computation time needed by oracle (because we track the regret), the state
transition time along the trajectories of oracle and each algorithm, etc. In each
scenario, we set the discount factor “ = 0.99 and run the algorithms for 3000
episodes per simulation.
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Learning in Average Reward

Restless Markovian Bandits

8

In the previous chapter, we adapted a few learning algorithms to discounted rested

Markovian bandits and showed that their regrets, which were upper bounded sub-

linearly in the number of arms, matched the minimax Bayesian regret we derived in

the chapter. We also showed that there was no index definition such that, relying

on the confidence bonuses on arms’ transition, computing the optimistic index on

each arm independently of the other arms guaranteed the optimism in face of

uncertainty (OFU) principle in general discounted rested bandits. This chapter

considers the learning problem in restless Markovian bandits with average reward

criterion. Such a bandit is a Markov decision process (MDP) that suffers from the

curse of dimensionality, and general-purpose learning algorithms are not efficient

when directly applied. Recently, a few learning algorithms have been specifically

designed for restless bandits. Yet, they most often work only for very particular

subclasses of restless bandits or require conditions that are computationally hard

to verify. Hence, in this chapter, we provide some arguments to explain why those

conditions are needed when learning in restless Markovian bandits. We show that

the properties of the local arms (like ergodic or small diameter) do not generally

imply similar properties for the bandit. Therefore, defining a subclass of restless

bandits with desirable properties (like small diameter) by only making assumptions

about arms is difficult. Finally, we discuss a few issues when learning in the general

class of restless bandits and present RB-TSDE [AM22] along with its regret analysis

under a few technical assumptions.

Section 8.1 provides the context of learning in restless bandit problems and presents

our contributions. We discuss several existing works that design reinforcement

learning (RL) algorithms for restless bandit problems in Section 8.2. We then

recall the notations and the problem formulation of the average reward restless

bandit in Section 8.3. Section 8.4 accumulates examples and counter-examples that

respectively show “desirable” and “non-desirable” properties of restless bandit when

its arms all have “desirable” properties. Section 8.5 discusses the requirements when

using Whittle index policy as the baseline policy in regret definition. We also present
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an overview of regret analysis of RB-TSDE [AM22], a modified version of TSDE

[Ouy+17] for learning in restless bandits. Section 8.6 concludes this chapter.

8.1 Contributions

Restless Markovian bandits are the structured MDPs that manifest the curse of

dimensionality. The apparent effect of the curse is that the bandit’s state size is

exponential in the number of arms.

For learning generic MDPs with average reward criterion, the current best algorithms

have a regret over T time steps bounded by Õ(
Ô

HSAT ) in the unknown weakly

communicating MDP with state size S, action size A, and an upper bound on the

span of the optimal bias function H (see Table 3.2 for more algorithms with regret

guarantee). From what we have observed, the MDP properties that appear in regret

upper bound are:

• the diameter D (defined by Definition 3.3) used in e.g., [JOA10; FPL20];

• the upper bound on the span of the optimal bias function H Ø sp(hú) used in

e.g., [BT12; Ouy+17; Fru+18; ZJ19];

• the mixing time tmix (defined by Definition 8.1) used in e.g., [Ort20].

So, applying these algorithms to learn restless Markovian bandits with average

reward criterion provokes a few critical issues:

• The state size of restless bandit is exponential in the number of arms.

• The diameter D (if defined), the mixing time tmix (if defined), or the upper

bound on the span of the optimal bias H may also be exponential in the

number of arms.

• Compute an optimal policy in restless bandit is PSPACE-hard [PT94], let alone

the computation of optimistic policy.

So, the regret bound of those general-purpose RL algorithms is not scalable with

the number of arms. A few algorithms specifically designed for restless bandits

successfully eliminate the exponentiality in the number of arms from the state size of

the bandit in their regret bound (see e.g., [Ort+12; JAT19; AM22]). Yet, no explicit

dependency between the diameter, the mixing time, or the upper bound on the span

of the optimal bias function that appears in their regret bound and the number of
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arms is given. This calls for definitions of subclasses of restless bandits whose MDP

properties can be expressed polynomially in the number of arms.

In this chapter, we provide a few results that support this argument and study how

the assumptions on arms’ structure translate into the structure of the bandit. First,

we show that no matter how good a learning algorithm is, there is a restless bandit

whose arms are unichain that makes the algorithm suffer an expected regret linear

in the total steps regardless of how many total steps the algorithm wants to learn.

This implies that no RL algorithms can perform uniformly well over the general class

of restless bandits whose arms are unichain.

Furthermore, we study the restless bandits having richer arm structures. We show

that a restless bandit can be multichain even though its arms are ergodic. Moreover,

we also show that:

• for restless bandits whose arms are ergodic,

– there is an ergodic bandit whose diameter is exponential in the number

of arms;

– there is an ergodic bandit whose mixing time can be as big as we want;

• for restless bandits that are communicating, there is a bandit whose arms have

a bounded span of local bias function that has a span of global bias function

as large as we want.

We also provide a positive result related to the ergodicity coefficient of the bandit.

Finally, we discuss model-based RL algorithms that use Whittle index policy as the

baseline policy in regret definition. We also provide an overview of regret analysis

of RB-TSDE [AM22] when learning in restless bandits. All of our results suggest

that the MDP properties of restless bandit can be exponential in the number of arms

in the general class of restless bandits. This calls for work to design subclasses of

restless bandits whose MDP properties can be expressed polynomially in the number

of arms. Another research direction is to develop algorithms that directly learn the

Whittle index of the unknown restless bandit in model-free style.

8.2 Related work

We believe that there are at least two directions of research for learning in an

unknown restless Markovian bandit: (1) model-free algorithms that directly estimate
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the Whittle index and (2) model-based algorithms that estimate the parameters of

the unknown restless bandit.

Since the Whitle index policy is asymptotically optimal when the restless bandit

satisfies some conditions [WW90] and performs exceptionally well in practice (see

e.g., [GM02; Ans+03; GRK06]), the first direction consists in learning the Whittle

index of the unknown fully observed restless bandit. The celebrated Q-learning (QL)

algorithm [Wat89] is one of the most popular approaches. For the discrete state-

space restless arm, the work of [GJN21] learns the Whittle index by maintaining two

Q-functions, updating them using QL algorithm, and deducing the Whittle index from

them when needed. Meanwhile, the work of [Fu+19] learns the Whittle index by

maintaining only one Q-function, updating it using QL algorithm, and deducing the

Whittle index as the smallest critical penalty that equalizes the estimated Q-values

of action activate and action rest. Yet both works [GJN21; Fu+19] only provide

a numerical proof of convergence to the correct Whittle index, and no theoretical

guarantee is given. Using the ideas from two-timescale stochastic approximation (see

e.g., [ABB01; Sch93]), the work of [AB22] proposes a two-timescale QL algorithm for

learning the Whittle index of any unknown indexable restless arms. Their algorithm

maintains a Q-function and a vector of penalty separately. It updates Q-function

using QL algorithm and the vector of penalty using a stochastic iterative algorithm

with a slower timescale update compared to the QL algorithm. The theoretical and

numerical proofs of convergence are provided in their work [AB22]. For continuous

state-space restless arm, the work of [Nak+21] uses a deep reinforcement learning

framework to estimate the Whittle indices of the arms with large state space or

convoluted transition kernel, assuming a notion of strong indexability.

The second direction is to design a model-based learning algorithm with a theoretical

performance guarantee. For partially observed restless bandit, the work of [Ort+12]

derives colored-UCRL algorithm, a modified version of UCRL2, that achieves a regret

bounded proportionally to
Ô

T where T is the total steps. In its regret bound, colored-

UCRL successfully removes the exponentiality in the number of arms from the state

size of the bandit. However, the mixing time parameter appears in the bound, and

the dependency between the mixing time and the number of arms is unclear. The

same discussion goes to the work of [JAT19], which adapts TSDE [Ouy+17] to the

learning setting of restless bandit and assumes a condition similar to [Ort+12]. To

the best of our knowledge, Restless-UCB of [WHL20] is the first algorithm that has

a regret bounded explicitly linearly in the number of arms for partially observed

restless bandits. Yet, we must mention that their regret bound is proportional to T 2/3,

and their result is valid for a very restrictive class of restless bandits in which each

arm is a birth-death Markov reward process whose state transition satisfies a few
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technical constraints. Also, Restless-UCB requires a generative model to uniformly

explore the dynamic of each arm before committing to its optimistic planning. All of

these works also assume an oracle that knows how to compute an optimal policy

given a restless bandit. Finally, the work of [AM22] adapts TSDE [Ouy+17] to the

fully observed restless bandit problems. It successfully removes the exponentiality in

the number of arms from the state size of the bandit in the Bayesian regret bound of

RB-TSDE [AM22], the modified version of TSDE [Ouy+17]. However, the ergodicity

coefficient of the bandit appears in the regret bound, and the dependency between

such a coefficient and the number of arms is unclear. It may be useful to note that

the ergodicity coefficient provides an upper bound on the MDP’s mixing time and

the span of the bias function.

8.3 Restless bandit with average reward criterion

We recall from Chapter 4 that a restless Markovian bandit is multi-armed bandit

having n œ N
+ arms. Each arm ÈSi, {0, 1}, {r0

i , r1
i }, {P 0

i ,P 1
i }Í is an MDP with a

finite state space Si of size S and a binary action space {0, 1}, where 0 denotes

the action “rest”, and 1 denotes the action “activate”. If arm i is in state si, and

the decision maker executes ai œ {0, 1}, the arm incurs a random reward with the

expected value rai
i (si) and transitions to state sÕ

i œ Si with a probability P ai
i (si, sÕ

i).

Similarly to what is done in Chapter 7, we assume that the state space of the arms

are pairwise distinct: Si fl Sj = ÿ for any i ”= j. So, we will drop the index i from

the expected reward and transition if no confusion is possible: we denote them by

rai(si) instead of rai
i (si) and by P ai(si, sÕ

i) instead of P ai
i (si, sÕ

i).

At time step 1, the state of all arms denoted by s1 := (s1,1, . . . , s1,n) is sampled

according to some initial distribution fl over the state space X := S1 ◊ · · · ◊ Sn. At

time step t Ø 1, the decision maker observes the current state of all arms denoted

by st := (st,1, . . . , st,n) and activates exactly m arms encoded by action at :=

(at,1, . . . , at,n) such that at œ {0, 1}n and
qn

i=1 at,i = m, and m œ [n] is constant

over time. Each arm i incurs then a random reward rt,i and makes a transition to

the next state st+1,i in function of st,i and at,i but independently of the other arms.

So, the restless Markovian bandit is a specific MDP – that we denote by M – whose

state space is X , and action space is A(m) := {a œ {0, 1}n :
qn

i=1 ai = m}. We will

say global to refer to the quantities related to the bandit M and local to refer to the

quantities related to the arms. Without loss of generality, we assume that for any

global state s œ X and global action a œ A(m), the expected reward is bounded like
qn

i=1 rai(si) œ [0, rmax].
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The decision maker wants to compute a policy fi : X ‘æ A(m) that maximizes the

gain as defined in Section 2.4: for any global state s œ X ,

gfi
M (s) := lim

T æ+Œ

1

T
E

fi

C
Tÿ

t=1

nÿ

i=1

rt,i | s1 = s

D

. (8.1)

As presented in Chapter 2, if the MDP M has finite state and action spaces, then

an optimal policy fiú such that for all s œ X , gfiú

(s) = gú(s) := maxfi gfi(s) exists

and is deterministic. However, it is shown in [PT94, Theorem 4] that computing an

optimal policy in restless bandit with average reward is PSPACE-hard.

We recall that the diameter of an MDP (see Definition 3.3) is finite if and only if the

MDP is communicating. By [JOA10, Appendix A], the diameter of bandit M is lower

bounded by

log|A(m)| |X | ≠ 3 =
nÿ

i=1

log|A(m)| |Si| ≠ 3 = n log(n
m) S ≠ 3.

This lower bound is not exponential in n, which inspires us to study the restless

bandit’s diameter and gives us hope to remove the exponentiality in n from the

regret bound of general-purpose algorithms.

8.3.1 Additional structural properties of MDP

We presented the classification of MDPs in Definition 2.2 of Chapter 2. We also

divided the MDP space as shown in Figure 2.1. In addition, we say that an MDP is

recurrent if, for all policy fi, the transition matrix P fi defines a Markov chain where

all states are recurrent (equivalently, for all states s and sÕ, a Markov chain starting

in s will visit sÕ with probability 1). A recurrent or unichain MDP is called aperiodic

if all matrices P fi are aperiodic. An equivalence of the definition of ergodic MDP in

Definition 2.2 is that an MDP is ergodic if it is recurrent and aperiodic.

As mentioned in the beginning, there exist learning algorithms that rely on the

mixing time of the MDPs. So, we define the mixing time as the following. Following

[Wei+20, Definition 5.1],
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Definition 8.1 (The mixing time of ergodic MDP)

The mixing time of an ergodic MDP with state space S is defined as

tmix := max
fi

min

;

t Ø 1 :
.
.
.(P fi)t(s, ·) ≠ µfi

.

.

.
¸1

Æ 1

4
, ’s œ S

<

.

By Definition 8.1, the mixing time is the maximum time required for any policy

starting at any initial state to make the state distribution 1
4 -close (in ¸1 norm) to the

stationary distribution, the state distribution in steady regime.

8.4 Local and global structures in restless bandits

In the following, we study the structure of the bandit when all the local arms are

well-structured. To do so, we will provide a few simple examples and counter-

examples. In those examples, the bandit always has two arms, and exactly one arm

is activated at each decision time. To ease the exposition, Arm 1 is drawn in green

and Arm 2 in blue. In each arm, the state transitions of action “activate” are drawn

in black and those of action “rest” are drawn in dashed red. In the global MDP, the

state transitions when activating Arm 1 are drawn in green arrows, and those when

activating Arm 2 are drawn in blue. If applicable, the expected reward and transition

probability are noted along the transition arrows. However, if the transition is

deterministic, i.e., the transition probability is 1, we only note the expected reward

along the transition arrows.

8.4.1 Negative results

In general, the expected regret is frequently bounded based on concentration in-

equalities. These inequalities encode how well an unknown parameter is estimated.

So, it should be safe to say that “if the unknown parameters of the MDP are well

estimated, then the regret is bounded sub-linearly in the total steps T ”. Meanwhile,

for a restless Markovian arm having S states, there are at most 2S + 2S2 parame-

ters. This means that a restless bandit M described above is a specific MDP with

n(2S + 2S2) parameters instead of O(Sn). Intuitively, if each arm visits all of its

states frequently, then the 2S + 2S2 unknown parameters should be well estimated

as well as the n(2S + 2S2) unknown parameters of the bandit. Then, the expected

regret in learning such a restless bandit should be bounded not only linearly in n
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but also sub-linearly in T . Unfortunately, we show in this section that this reasoning

is not always applicable.

Non-learnable restless bandit whose arms are unichain

The following theorem shows that the assumption that each arm is unichain and

has a bounded span of local bias function under any policy is not enough to make a

restless bandit learnable.

Theorem 8.2 (Non-learnable restless bandit)

(i) For any learning algorithm L, there is a restless bandit whose arms are

unichain and have a bounded span of local bias function under any policy

such that for any total steps T Ø 2, the expected regret of L at least T
4 .

(ii) For any learning algorithm L, any total steps T Ø 2, there is a weakly com-

municating restless bandit whose arms are unichain and have a bounded

span of local bias function under any policy such that the expected regret

of L is at least T
5 .

Proof. Proof of (i) – consider the two restless bandit problems in Figure 8.2. The

arms of both bandits are given in Figure 8.1. All arms are unichain and have a

bounded span of local bias under any policy. Both bandits Ma and M b have two

recurrent classes: X 1 whose optimal gain is 0.5, and X 2 whose optimal gain is 1. So,

the regret gap when ending up in X 1 instead of X 2 is 1
2 . At time step 1, both Ma

and M b are in state (3, 1) with probability 0.5 and state (3, 2) with probability 0.5.

Consider any learning algorithm L that knows the parameters of both Ma and M b

but does not know with which bandit it is interacting. In states (3, 1), L activates

Arm 1 with probability ◊1, and in state (3, 2), L rests Arm 1 with probability ◊2,

where ◊1 and ◊2 are its degree of freedoms to minimize the expected regret.

Facing Ma, L ends up in X 1 with probability (1 ≠ ◊1) when starting in (3, 1) and

with probability (1 ≠ ◊2) when starting in (3, 2). Then, its expected regret is

E [Regret(L, Ma, T )] = 0.5
1

(1 ≠ ◊1)
T

2
+ ◊1 ◊ 0

2

+ 0.5
1

(1 ≠ ◊2)
T

2
+ ◊2 ◊ 0

2

=
T

2

3

1 ≠ ◊1 + ◊2

2

4

.
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Facing M b, L ends up in X 1 with probability ◊1 when starting in (3, 1) and with

probability ◊2 when starting in (3, 2) and its expected regret is

E

Ë

Regret(L, M b, T )
È

= 0.5
1

(1 ≠ ◊1) ◊ 0 + ◊1
T

2

2

+ 0.5
1

(1 ≠ ◊2) ◊ 0 + ◊2
T

2

2

=
T

2
◊ ◊1 + ◊2

2
.

Then L wants to adjust ◊1 and ◊2 such that

min
◊1,◊2œ[0,1]

3

max

;
T

2

3

1 ≠ ◊1 + ◊2

2

4

,
T

2
◊ ◊1 + ◊2

2

<4

. (8.2)

For the best possible choice of (◊1, ◊2), the minimum value of (8.2) is
T

4
. This means

that no learning algorithms can achieve an expected regret smaller than T
4 on both

models simultaneously. That concludes the proof.

1

2

3 001

0

0

0

1

2

3 001

0

0

0

1

2

001 0

Arm 1a Arm 1b Arm 2
State transition is deterministic.

Figure 8.1.: Restless Markovian arms. Arm 1a and Arm 1b has 3 states, and Arm 2 has 2
states. The black arrows show state transition of action activate, and the dashed
red one for action rest. The numbers along the arrows show the expected
reward when executing the actions. The span of bias in both arms are bounded
in [0, 1]. The two corresponding global MDPs is given in Figure 8.2.

Proof of (ii) – It is derived from (i) by slightly modifying the transition of state 1 of

Arm 1 as the following: if Arm 1 is activated in state 1, it transitions to state 3 with

probability Á or to state 2 with probability 1 ≠ Á. Then, the modified bandits Ma(Á)

and M b(Á) are both weakly communicating. Specifying a very small Á, for example,

Á = 1/T 2 and following the proof of (i) conclude the proof.

The difference between (i) and (ii) of Theorem 8.2 is that the bandits in (i) do

not depend on T , while the ones in (ii) do. So, the result of Theorem 8.2 (i) is

stronger. Yet, the reason that (ii) is proposed is that the bandits in (i) are not

weakly communicating (see Figure 2.1 for the MDP classification). According to

Definition 3.2, the regret is not defined in MDPs that are not weakly communicating.
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Ma := {Arm 1a, Arm 2} M b := {Arm 1b, Arm 2}
State transition is deterministic.

Figure 8.2.: Two restless bandits, each with two arms given in Figure 8.1. Exactly one arm
is activated at each decision time, and the initial global state is either (3, 1) or
(3, 2). The global state is denoted by (s1, s2), where s1 is the state of Arm 1 and
s2 of Arm 2. The green arrows show the state transition when activating Arm 1.
The blue arrows show the state transition when activating Arm 2. The numbers
along the arrows show the expected reward when executing the actions. The
global MDP Ma is formed by Arm 1a and Arm 2, and M b by Arm 1b and Arm 2.
Both MDPs are multichain and not weakly communicating because state (3, 1)
and (3, 2) are transient, and there are two recurrent classes under any policy:
X 1 := {(1, 1), (2, 2)} and X 2 := {(1, 2), (2, 1)}. The optimal gain in class X 1 is
0.5 and in class X 2 is 1. This shows that the actions in states (3, 1) and (3, 2)
are decisive. In Ma, the optimal action in state (3, 1) is to rest Arm 2, and in
state (3, 2) is to activate Arm 2. In contrast, in M b, the optimal action in state
(3, 1) is to activate Arm 2, and in state (3, 2) is to rest Arm 2. Starting by either
(3, 1) or (3, 2), no learning algorithms have a sublinear expected regret in both
examples.

168 Chapter 8 Learning in Average Reward Restless Markovian Bandits



So, the regret in (i) should be understood as the difference between the cumulative

reward of an optimal policy and the cumulative reward of the learner. For (ii), the

bandits are weakly communicating, and Definition 3.2 is applied.

Theorem 8.2 shows that no RL algorithms can perform uniformly well over the

general class of restless bandits whose arms are unichain. We prove this theorem by

constructing a bandit such that one of its arms admits a local transient state (the

state 3 of Arm 1 in Figure 8.1). The constructed bandit then has two global transient

states (the states (3, 1) and (3, 2) in Figure 8.2). In fact, if a restless bandit has n

arms, each arm has S states, and there exists one arm that admits one local transient

state, then the bandit has Sn≠1 global transient states. This inspires us to study the

bandits whose arms have no local transient state.

Local recurrence does not imply global recurrence

The following theorem shows that a restless bandit whose arms are ergodic or

recurrent is not necessarily unichain.

Theorem 8.3 (Multichain restless bandit)

(i) Among restless bandits whose arms are recurrent, there is a bandit that is

not weakly communicating.

(ii) Among restless bandits whose arms are ergodic, there is a bandit that is

multichain.

Proof. Proof of (i) – It is given by the counter-example in which the restless bandit

has two arms shown in Figure 8.3, and exactly one arm is activated at each decision

time. For each arm, both “activate” and “rest” actions induce the same state transition.

In such example, the restless bandit is a multichain and not weakly communicating

MDP (see Figure 2.1 for MDP classification) because there are two recurrent classes

under any policy: one composed of {(1, 1), (2, 2)} and the other one is {(1, 2), (2, 1)}.

Proof of (ii) – It is given by the following counter-example. Consider a restless

bandit with two 8-state arms presented in Figure 8.4. Both arms are identical in

terms of state transition, which is summarized in Table 8.1. We observe that when

rest, state 1 and 2 have the same possible next states 2 and 3. Similarly, the pair

{3, 4} has {4, 5}, {5, 6} has {6, 7}, and {7, 8} has {8, 1}. Similar pattern is observed

under action activate: {2, 3} has {3, 4}, {4, 5} has {5, 6}, {6, 7} has {7, 8}, and {8, 1}

8.4 Local and global structures in restless bandits 169



1

2

001 0

1

2

001 0
1, 1 1, 2 2, 12, 2

0

0

0

0

0

0

1

1

Arm 1 Arm 2 Global MDP having four states.
State transition is deterministic.

Figure 8.3.: A restless bandit with two arms and exactly one arm is activated at each
decision time. The global state is denoted by (s1, s2), where s1 is the state
of Arm 1 and s2 of Arm 2. The green arrows show the state transition when
activating Arm 1. The blue arrows show the state transition when activating
Arm 2. The numbers along the green and blue arrows show the expected
reward when executing the actions.
For both arms, the black arrows show state transition of action activate, and
the dashed red ones for action rest. The numbers along the black and dashed
red arrows show the expected reward when executing the actions.

has {1, 2}. This means that we can construct a cycle of transition by alternating

between rest (R) and activate (A):

{1, 2}
Ræ {2, 3}

Aæ {3, 4}
Ræ {4, 5}

Aæ {5, 6}
Ræ {6, 7}

Aæ {7, 8}
Ræ {8, 1}

Aæ {1, 2}.

With a proper synchronization between the states of Arm 1 and Arm 2, we can

construct policies that induce two recurrent classes as presented in Figure 8.5.

Indeed, consider the following arrangement.

Arm 1 : {1, 2}
Ræ {2, 3}

Aæ {3, 4}
Ræ . . .

Aæ {1, 2}

Arm 2 : {4, 5}
Aæ {5, 6}

Ræ {6, 7}
Aæ . . .

Ræ {4, 5}

Bandit :

Q

c
c
a

1, 5

2, 4

2, 5

R

d
d
b

2æ

Q

c
c
a

2, 6

3, 5

3, 6

R

d
d
b

1æ

Q

c
c
a

3, 7

4, 6

4, 7

R

d
d
b

2æ . . .
1æ

Q

c
c
a

1, 5

2, 4

2, 5

R

d
d
b

, (8.3)

where the symbol iæ in Equation (8.3) means the transition when Arm i is activated.

It means that any policies that activate Arm 2 for any odd s œ [8], and rest Arm 2 for

any even s œ [8] when the bandit is in state (s, s + 4), (s + 1, s + 3), and (s + 1, s + 4)

induce a recurrent class X 1 as given in Figure 8.5 (note that for s big enough, state 9

is state 1, 10 is 2, etc.). The recurrent class X 2 in Figure 8.5 is constructed by simply

changing the sequence of Arm 2’s state in the arrangement above and adapting the

state of the bandit accordingly:
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Arm 1 : {1, 2}
Ræ {2, 3}

Aæ {3, 4}
Ræ . . .

Aæ {1, 2}

Arm 2 : {8, 1}
Aæ {1, 2}

Ræ {2, 3}
Aæ . . .

Ræ {8, 1}

Bandit :

Q

c
c
a

1, 1

2, 8

2, 1

R

d
d
b

2æ

Q

c
c
a

2, 2

3, 1

3, 2

R

d
d
b

1æ

Q

c
c
a

3, 3

4, 2

4, 3

R

d
d
b

2æ . . .
1æ

Q

c
c
a

1, 1

2, 8

2, 1

R

d
d
b

So, any policies that activate Arm 2 for any odd s œ [8], and rest Arm 2 for any even

s œ [8] when the bandit is in state (s, s), (s + 1, s + 7), and (s + 1, s) induce the class

X 2. All in all, any policies that activate Arm 2 for any odd s œ [8], and rest Arm 2

for any even s œ [8] when the bandit is in state (s, s), (s + 1, s + 7), (s + 1, s), (s, s +

4), (s + 1, s + 3) and (s + 1, s + 4) induce two recurrent classes X 1 and X 2. That

concludes the proof.

Current state Next state when rest Next state when activate
1 2 or 3 1 or 2
2 2 or 3 3 or 4
3 4 or 5 3 or 4
4 4 or 5 5 or 6
5 6 or 7 5 or 6
6 6 or 7 7 or 8
7 8 or 1 7 or 8
8 8 or 1 1 or 2

Table 8.1.: State transition of arms in Figure 8.4. Each transition happens with probability
0.5

Theorem 8.3 means that even though all arms are ergodic, the corresponding bandit

is not necessarily ergodic, and its mixing time can be infinite. This result is “not very

intuitive”, and it is crucial because assuming that all arms are ergodic is a popular

condition in learning restless bandits (see e.g., [Ort+12; JAT19]).

To go further, the following theorem will show that even with an additional assump-

tion that the bandit is also ergodic, the global mixing time can still be as large as we

want. That is, we show that the MDP properties of a bandit, such as the diameter,

the mixing time, and the span of the global bias function can be arbitrarily large.
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3

456

7

Arm 1 Arm 2

Each state transition happens with probability 0.5.

Figure 8.4.: Two restless Markovian arms, each having 8 states. Both arms are identical in
terms of transition structure. The black arrows show state transition of action
activate, and the dashed red ones for action rest. To ease the exposition, the
expected reward is not shown because it is not relevant to the analysis. Also,
each state transition happens with probability 0.5. We provide a list of state
transitions in Table 8.1. The restless bandit having these two arms and exactly
one arm is activated at each decision time is multichain because some policies
induce two classes of recurrent states as shown in Figure 8.5.

Theorem 8.4 (MDP properties of restless bandit)

(i) There is a restless bandit having n 2-state arms, all of whom have a

diameter of size 2, that is ergodic and has a diameter of size 2n.

(ii) There is a constant c > 1 such that for each constant C > 1, there is

a restless bandit whose arms are ergodic and have a local mixing time

smaller than c that is ergodic and has a global mixing time larger than C.

(iii) There is a constant c > 0 such that for each constant C > 0, there is a

restless bandit whose arms have a span of local bias function under any

policy upper bounded by c, that is communicating and has a span of global

bias function lower bounded by C.

Proof. Proof of (i) – consider a bandit having n arms, each arm is an MDP with

state space {1, 2} and has 0.5 probability of changing state under both actions. It

should be clear that the bandit is ergodic. Indeed, any state of bandit can be reached

from any other global states with probability (1/2)n. Hence, the diameter of the

bandit is 2n.
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Recurrent

Class X
1

1,1
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2,1
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3,2
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4,3
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Figure 8.5.: State transition within two recurrent classes of a restless bandit with
2 arms presented in Figure 8.4. The first recurrent class is X 1 :=
{(s, s+4), (s+1, s+3), (s+1, s+4) : s œ [8]}, and the second one is X 2 :=
{(s, s), (s+1, s), (s+1, s+7) : s œ [8]}. These are two recurrent classes under
any policies that activate Arm 2 for any odd s œ [8], and rest Arm 2 for any
even s œ [8] when the bandit is in states (s, s), (s, s + 4), (s + 1, s), (s + 1, s +
3), (s + 1, s + 4), (s + 1, s + 7). The blue arrows show the state transitions when
Arm 2 is activated, and the green ones show the one when Arm 1 is activated.
Each ellipse regroups the states having the same state transition under the
same action. Note that each ellipse can transition to itself like in X 1 state
(2, 4) can transition to state (2, 5), but it is not shown. The rest of the states
X \ (X 1 fi X 2) are transient.
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Proof of (ii) – Let p1 and p2 be the state transition functions of Arm 1 and Arm 2

given in Figure 8.4. p1 and p2 are both ergodic and induce the same state transition,

which is given in Table 8.1. Suppose that the local mixing time of p1 and p2 is

tmix > 1. Note that we can specify p1 and p2 such that tmix is small. Let’s denote the

bandit having two arms p1 and p2 by M . By Theorem 8.3, M is multichain. So, by

Definition 8.1, the mixing time of M is infinite.

Now, consider two 8-state restless arms having transition functions u1 and u2, where

u1 and u2 induce the same state transition: any local state s œ [8] transitions to any

other local state sÕ œ [8] with probability 1
8 under either action rest or activate. It is

then clear that u1 and u2 are both ergodic and have a local mixing time of size 1.

Any bandit having two arms u1 and u2 is an ergodic MDP.

For any Á œ (0, 1), consider two 8-state restless arms having transition function

pÕ
1 = (1 ≠ Á)p1 + Áu1 and pÕ

2 = (1 ≠ Á)p2 + Áu2. That is, at each state transition, a

two-face coin whose head probability is Á is tossed. If the coin heads up, the arm

evolves like u. Otherwise, the arm evolves like p. So, pÕ
1 and pÕ

2 are both ergodic. We

know that if Á = 0, then the local mixing time of pÕ
1 and pÕ

2 is tmix, and if Á = 1, then

the mixing time is 1. Then, there exists Á0 > 0 such that the local mixing time of pÕ
1

and pÕ
2 is tmix/2. For any Á œ (0, Á0], any bandit having exactly two arms pÕ

1 and pÕ
2 is

an ergodic MDP denoted by M Õ(Á). The global mixing time of M Õ(Á) is then defined.

However, when Á æ 0, M Õ(Á) æ M . This is equivalent to say that when Á æ 0, the

mixing time of M Õ(Á) tends to infinity.

Proof of (iii) – We use the same technique in the proof of (ii). First, consider the

bandit having 4 global states as in Figure 8.3. We denote this bandit by M . We

denote the arms’ transition functions by p1 and p2 and reward functions by r1 and

r2. It should be clear that for each arm, the span of local bias under any policy

is bounded in [0, 1], but the bandit M is multichain. So, the span of global bias

function is infinite.

Consider now two 2-state arms with reward functions r1 and r2, and transition

functions u1 and u2 that induce the same state transition: any local state s œ [2]

transitions to any other local state sÕ œ [2] with probability 1
2 . So, u1 and u2 are both

ergodic, and the span of local bias function is bounded in [0, 1].

With the same technique above, for any Á œ (0, 1), consider two 2-state arms having

reward functions r1 and r2, and transition functions pÕ
1 = (1 ≠ Á)p1 + Áu1 and

pÕ
2 = (1 ≠ Á)p2 + Áu2. So, for any Á œ (0, 1), pÕ

1 and pÕ
2 are both ergodic and have the

span of local bias function bounded in [0, 1]. We denote any bandit having exactly
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two arms (r1, pÕ
1) and (r2, pÕ

2) by M Õ(Á). We will see in Theorem 8.5 that for any

Á œ (0, 1), M Õ(Á) is a communicating MDP. However, when Á æ 0, M Õ(Á) æ M . This

is equivalent to say that when Á æ 0, the span of global bias function of M Õ(Á) tends

to infinity.

With Theorem 8.4, the curse of dimensionality in restless bandits manifests not only

in the state size but also in the MDP properties of the bandit. Hence, it is equally

important to take into account the dependency between the number of arms and

the MDP properties of the restless bandits when deriving the regret bound of RL

algorithms.

8.4.2 Positive results

This section shows a few results in which the assumption on local arms implies

“desirable” properties on the bandit. The term “desirable” refers to the fact that the

properties frequently required by the general-purpose RL algorithms are satisfied.

This term does not imply that the learning algorithm has a regret bound sublinear in

the total steps nor that its regret bound is explicitly polynomially in the number of

arms.

Theorem 8.5 (Communicating restless bandit)

A restless bandit whose arms are ergodic is a communicating MDP.

Proof. We prove the theorem by its contra position. Assume that a given bandit is

not communicating (either weakly communicating or not weakly communicating).

Then, in this bandit, there are global states that are not reachable from other states.

This implies two possibilities: (1) for some arms, some local states are not recurrent,

(2) all arms are recurrent but periodic. Each possibility implies that there exists at

least one arm that is not ergodic.

This theorem means that if all arms are ergodic, then the bandit has a finite diameter.

The following theorem also provides a positive result on the structure of bandit.

Theorem 8.6 (Unichain restless bandit)

A restless bandit whose arms are unichain with at least one local state reachable

in one step from any other local states under both rest and activate actions is
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unichain with at least one global state reachable in one step from any other

global states under any policies.

Proof. Consider the bandit M described in Section 8.3. For each arm i œ [n], let zi

be the state that is reachable in one time step from any other states under both rest

and activate actions. We have that P ai(si, zi) > 0 for all i œ [n], xi œ Si, ai œ {0, 1}.

For any global action a œ A(m), any global states s, sÕ œ X , the bandit M ’s state

transition is given by p(sÕ | s,a) =
rn

i=1 P ai(si, sÕ
i). Then, for any action a œ A(m),

any state s œ X , we have

p(z | s,a) =
nŸ

i=1

P ai(si, zi) > 0,

because n is finite and for any i, P ai(si, zi) > 0. Hence, the global state z is reachable

from any other global states in one step under any policies. In consequence, no

policies induce a global Markov chain that has multiple closed irreducible recurrent

classes. That concludes the proof.

Theorem 8.6 means that if the ergodicity coefficient of all arms is strictly smaller than

1, then the ergodicity coefficient of the corresponding bandit is also strictly smaller

than 1. As we mentioned above, the ergodicity coefficient is an MDP parameter that

provides an upper bound on the MDP’s mixing time and span of bias function. We

will see this idea when we discuss the regret analysis of RB-TSDE [AM22] with a

precise definition of the ergodicity coefficient (see Equation (8.5)) in the sections

below.

8.5 Learning algorithms for restless bandits

8.5.1 Discussion on using Whittle index policy as the baseline in

regret definition

In Chapter 7, we use Gittins index policy as the baseline policy for evaluating the

regret of learning algorithms in discounted rested bandit because this index policy

is optimal. Yet, Whittle index policy is only asymptotically optimal under some

technical conditions [WW90] and suboptimal in general. This brings two options to

the discussion.
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(a) Shall we compare the algorithm to an oracle that knows an optimal policy for

any restless bandit?

(b) Shall we use Whittle index policy as a baseline policy, knowing that it is

generally suboptimal?

Assuming an oracle is what is done in [Ort+12; JAT19; WHL20] when learning

in restless bandits and in [OV14; RM20; XT20] when learning in factored-MDPs.

The authors are then solely interested in the statistical aspect of the learning algo-

rithms.

We now focus on the second option (b). First, if the bandit is indexable, then Whittle

index policy is defined. Also, regret definition requires that the gain of baseline

policy is state-independent. So, a possible assumption to use Whittle index policy

as the baseline policy is that the unknown bandit is indexable and Whittle index

policy is unichain, i.e., the Markov chain induced by Whittle index policy has a

single recurrent class. This discussion also extends to the learning approaches. For

OFU methods, we have shown in Chapter 7 that optimistic algorithms that apply

confidence bonus on arm’s transition cannot leverage index policy to choose an

imagined bandit Mk with index policy fik that guarantees the optimism at episode k.

Worse yet, there is no guarantee that the optimistic restless bandit Mk is indexable,

let alone the optimism. For posterior sampling, we need the imagined bandit Mk

to be indexable and the corresponding Whittle index policy fik to induce state-

independent gain. This can be done by making an assumption on the support of

the prior distribution. That is, any bandit drawn from the support of the prior

distribution is indexable and admits unichain Whittle index policy. We will see in

the following that this is what is done in the work of [AM22].

8.5.2 Algorithms with regret guarantee

Similarly to what we have seen in Chapter 7, the current best general-purpose RL

algorithms have a regret bound Õ
1Ò

HSn
!n

m

"
T

2

in the restless bandit M described

in Section 8.3, where H is the upper bound on the span of the global optimal bias

function, and Sn and
!n

m

"
are the state and action sizes of the bandit M . There are

two issues in this regret bound.

(a) One apparent problem is the term Sn that is the state size of M . This problem

is resolved in the work of [Ort+12; JAT19; AM22].
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(b) The other problem is the implicit dependency between the upper bound H

and the number of arms n. As we have seen in Theorem 8.4, a bandit may

have the span of global bias function as large as we want.

In the following, we provide a sketch of proof of the regret bound of RB-TSDE

[AM22], a modified version of TSDE [Ouy+17] to restless Markovian bandit, and a

discussion on their result.

Overview of regret analysis of RB-TSDE [AM22]

In this section, we start by presenting how RB-TSDE [AM22] works and the as-

sumptions needed in [AM22]. Next, we provide an overview of regret analysis of

RB-TSDE under the assumptions. Finaly, we finish the section with a discussion of

their result.

RB-TSDE is a Bayesian learning algorithm for restless Markovian bandits with the

average reward criterion. Extended from TSDE [Ouy+17], RB-TSDE updates its

policy episodically as the following. Let tk be the time step when episode k begins

with the convention t1 := 1. For each arm i œ [n], let Nt(si, ai) be the number of

times up to time step t that the learner executes action ai when arm i is in state si.

RB-TSDE terminates episode k Ø 1 at time step t > tk and updates its policy if

t ≠ tk≠1 > 2tk or Nt(si, ai) > 2Ntk(si, ai) for some (si, ai). (8.4)

RB-TSDE [AM22] exploits the structure of restless bandit by choosing a prior distri-

bution „i for each unknown arm ÈSi, {0, 1}, {r0
i , r1

i }, {P 0
i ,P 1

i }Í before the learning.

At time step tk, RB-TSDE uses the collected observations otk to derive a posterior

„i(· | otk), and draws a sample ({r0k
i , r1k

i }, {P 0k
i ,P 1k

i }) according to „i(· | otk) for

each arm i. The samples {({r0k
i , r1k

i }, {P 0k
i ,P 1k

i })}iœ[n] is then used to compute

Whittle index policy fik.

RB-TSDE [AM22] computes Whittle index policy fik of the sampled bandit Mk

because Whittle index policy of the unknown bandit M , denoted by fi⁄, is used as

the baseline policy for evaluating the regret of RB-TSDE. So, the work of [AM22]

assumes three conditions: Let supp(„i) be the support of prior distribution „i for each

arm i. Let „ be the joint prior distibution of all arms and supp(„) :=
on

i=1 supp(„i)

be the support of the joint prior „.
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Assumption 8.7

For any i œ [n] and ({r0Õ

i , r1Õ

i }, {P 0Õ

i ,P 1Õ

i }) œ supp(„i), the arm ÈSi, {0, 1}, {r0Õ

i , r1Õ

i }, {P 0Õ

i ,P 1Õ

i }Í
is indexable.

Assumption 8.8

Any bandit M Õ œ supp(„) admits Whittle index policy fiÕ that is unichain.

Assumption 8.9

There exists —ú < 1 such that any bandit M Õ œ supp(„) admits an ergodicity coefficient

—M Õ Æ —ú where

—M Õ = 1 ≠ min
s,sÕœX

a,aÕœA(m)

ÿ

zœX

min{pÕ(z | s,a), pÕ(z | sÕ,aÕ)}. (8.5)

The reasons why Assumptions 8.7 and 8.8 are needed are already discussed in

Section 8.5.1. Assumption 8.9 allows us to bound the span of global bias function

in a function of —ú. In addition, we should mention that by our Theorem 8.6,

Assumption 8.9 implies Assumption 8.8.

Assume that the unknown bandit M is drawn from supp(„). Under Assumptions 8.7

and 8.8, Whittle index policy fi⁄ is well-defined and induces a state-independent gain

g⁄
M in the unknown bandit M . Similarly to Definition 3.2, the regret of RB-TSDE

after T steps is given by

Regret(RB-TSDE, M, T ) := Tg⁄
M ≠

Tÿ

t=1

nÿ

i=1

rt,i. (8.6)

Its Bayesian regret is given by (3.5).

Now, we focus on bounding the regret of RB-TSDE. Let KT be the total number of

episodes up to time T . Then,

Regret(RB-TSDE, M, T ) =
KTÿ

k=1

tk+1≠1ÿ

t=tk

1

g⁄
M ≠

nÿ

i=1

rat,i(st,i)
2

(8.7)

+
nÿ

i=1

1

rat,i(st,i) ≠ rt,i

2

¸ ˚˙ ˝

∆t,0

Recall that fik is the Whittle index policy of the imagined bandit Mk. Under As-

sumption 8.7, fik is well-defined, and under Assumption 8.8, the gain of fik is
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state-independent. Then, the Bellman evaluation equation for fik in Mk gives: for

global state st œ X , at = fik(st),

0 =
nÿ

i=1

rat,ik(st,i) ≠ gfik

Mk +
ÿ

sÕœX

pk(sÕ | st,at)h
fik

Mk(sÕ) ≠ hfik

Mk(st). (8.8)

Then, adding Equation (8.8), 0 =
q

sÕœX p(sÕ | st,at)
1

hfik

Mk(sÕ) ≠ hfik

Mk(sÕ)
2

, and

0 = hfik

Mk(st+1) ≠ hfik

Mk(st+1) to Equation (8.7), and regrouping terms give

Regret(RB-TSDE, M, T ) =
KTÿ

k=1

tk+1≠1ÿ

t=tk

(g⁄
M ≠gfik

Mk)
¸ ˚˙ ˝

∆t,1

+
nÿ

i=1

1

rat,ik(st,i)≠rat,i(st,i)
2

¸ ˚˙ ˝

∆t,2

+
ÿ

sÕœX

1

pk(sÕ | st,at)≠p(sÕ | st,at)
2

hfik

Mk(sÕ)

¸ ˚˙ ˝

∆t,3

+ hfik

Mk(st+1)≠hfik

Mk(st)
¸ ˚˙ ˝

∆t,4

+
ÿ

sÕœX

p(sÕ | st,at)h
fik

Mk(sÕ) ≠ hfik

Mk(st+1)

¸ ˚˙ ˝

∆t,5

+∆t,0.

The six quantities are bounded as the following.

• The terms ∆t,0 and ∆t,5 are martingale difference terms whose expected value

is zero.

• The expected value of
qKT

k=1

qtk+1≠1
t=tk ∆t,1 is bounded by rmaxKT [AM22, Ap-

pendix A.2]

• The term ∆t,2 is bounded by Hoeffding’s inequality (or simply zero if the

rewards are deterministic).

• The telescopic sum
qKT

k=1

qtk+1≠1
t=tk ∆t,4 is bounded by

qKT
k=1 sp(hfik

Mk).

The term ∆t,3 is bounded by sp(hfik

Mk)
.
.
.pk(· | st,at) ≠ p(· | st,at)

.

.

.
¸1

. In general

MDPs, the concentration of global transition
q

sÕœX

-
-
-pk(sÕ | s,a) ≠ p(sÕ | s,a)

-
-
- is

bounded proportionally to


|X | (see [Qia+20]). However, restless bandit is a

well-structure MDP. The work of [AM22] exploits this structure as the following:

For any global state s œ X and global action a œ A(m), it follows from [JAT19,

Lemma 13] that

ÿ

sÕœX

-
-
-pk(sÕ | s,a) ≠ p(sÕ | s,a)

-
-
- Æ

nÿ

i=1

ÿ

sÕ

iœSi

-
-
-P aik(si, sÕ

i) ≠ P ai(si, sÕ
i)

-
-
- ,
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where
q

sÕ

iœSi

-
-
-P aik(si, sÕ

i) ≠ P ai(si, sÕ
i)

-
-
- is the concentration of the local transition,

which is bounded proportionally to
Ô

S using Weissman’s inequality.

Using the doubling trick (8.4), [AM22, Lemma A.1] gives KT Æ 2


nST ln(T ). So,

what is left to bound is the span of the global bias function sp(hfik

Mk). By [AM22,

Lemma 5.1], for any k Ø 1, sp(hfik

Mk) Æ 2rmax

1 ≠ —ú
.

In summary, RB-TSDE [AM22] enjoys the following Bayesian regret bound.

Proposition 8.10 ([AM22, Theorem 4.1])

Assume that M œ supp(„). Under Assumptions 8.7-8.9,

BayesRegret(RB-TSDE, „, T ) < 40
rmax

1 ≠ —ú
nS

Ò

T ln(T ) (8.9)

This result presents an exponential improvement compared to the current best

general-purpose RL algorithms whose regret bound is Õ
1

ˆ
ı
ı
ÙHSn

A

n

m

B

T
2

.

However, the upper bound on the span of global bias function H :=
2rmax

1 ≠ —ú
in (8.9)

has no explicit dependency with the number of arms n.

In the following section, we provide our last result that shows the dependency

between —ú and n under Assumption 8.9.

Local and global ergodicity coefficients in restless Markovian bandit

Consider the bandit M described in Section 8.3.

Theorem 8.11 (Local and global ergodicity coefficients)

For each arm i œ [n], the ergodicity coefficient “i of the arm is defined by

“i = 1 ≠ min
si,s

Õ

iœSi

a,aÕœ{0,1}

ÿ

ziœSi

min{P a(si, zi), P aÕ

(sÕ
i, zi)}.

Similarly, the ergodicity coefficient —M of the bandit M is defined in the same

manner as (8.5).

If for any arm i, “i < 1, then —M < 1.

Moreover, if there exists Á > 0 such that for any arm i œ [n],

“i Æ 1 ≠ Á, (8.10)
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then —M Æ 1 ≠ Án.

Proof. For any two global states s, sÕ œ X and any two actions a,aÕ œ A(m), we

have

ÿ

zœX

min{p(z | s,a), p(z | sÕ,aÕ)} =
ÿ

zœX

min

I
nŸ

i=1

P ai(si, zi),
nŸ

i=1

P aÕ

i(sÕ
i, zi)

J

Ø
ÿ

zœX

nŸ

i=1

min
Ó

P ai(si, zi), P aÕ

i(sÕ
i, zi)

Ô

=
nŸ

i=1

Q

a
ÿ

ziœSi

min
Ó

P ai(si, zi), P aÕ

i(sÕ
i, zi)

Ô

R

b .

Since for any i œ [n], “i < 1, we have that

ÿ

ziœSi

min{P ai(si, zi), P aÕ

i(sÕ
i, zi)} Ø min

xi,yiœSi

a,aÕœ{0,1}

ÿ

ziœSi

min{P a(si, zi), P aÕ

(sÕ
i, zi)}

= 1 ≠ “i > 0.

In consequences,
q

zœX min{p(z | s,a), p(z | sÕ,aÕ)}>0. We conclude that —M <1.

Moreover, if there exists Á > 0 such that (8.10) holds for any i œ [n], then it follows

that

nŸ

i=1

Q

a
ÿ

ziœSi

min{P ai(si, zi), P aÕ

i(sÕ
i, zi)}

R

b Ø Án.

We can conclude that —M Æ 1 ≠ Án using its definition.

Assumption 8.9 is equivalent to saying that there exists Á > 0 such that any bandit

M Õ œ supp(„) satisfies the condition (8.10) of Theorem 8.11, and —ú = 1 ≠ Án. The

latter implies that H :=
2rmax

1 ≠ —ú
= 2rmax

3
1

Á

4n

. Therefore, (8.9) remains exponen-

tial in n. However, this certainly does not cancel the exponential improvement in

the regret bound of RB-TSDE [AM22] over the general-purpose RL algorithms in

learning restless Markovian bandit problems.
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8.6 Conclusion

In this chapter, we provide different examples that show that defining a subclass

of restless bandits with desirable global properties by only making assumptions

about arms is difficult. Our examples also show that no RL algorithms can perform

uniformly well over the general class of restless bandits whose arms are unichain.

Furthermore, a restless bandit can be multichain even though its arms are ergodic.

We also present a few positive results, such as a restless bandit is communicating if

its arms are ergodic. Finally, we discuss the requirements when using Whittle index

policy as the baseline policy in regret definition for learning restless bandits and

provide an overview of regret analysis of RB-TSDE [AM22], a modified version of

TSDE [Ouy+17], whose regret bound provides an exponential improvement over

the current best general-purpose RL algorithms.

We believe that it is challenging to derive an upper bound on the span of global bias

function or the global diameter of restless bandit that is polynomially in the number

of arms. In fact, it is impossible to do so for general restless bandits as we have seen

in this chapter that the MDP properties of some restless bandits, such as the global

diameter, or the span of global bias function can be exponential in the number of

arms. This calls for restrictive assumptions on bandits to design an algorithm with

a regret bound explicitly polynomially in the number of arms, similar to the work

of [WHL20]. This also calls for model-free algorithms that directly learn Whittle

index of the unknown restless bandit in the direction of [Fu+19; GJN21; Nak+21;

AB22].
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Conclusions and Future Work 9

9.1 Conclusions

This thesis addresses two grand questions in Markovian bandits: (1) index computa-

tion given the bandit’s parameters and (2) minimizing the regret and the runtime of

learning algorithms using the problem structure and index policy when the bandit’s

parameters are unknown. For the former, we have introduced an algorithm for

computing Whittle or Gittins indices of a Markovian arm in subcubic time complexity.

For the latter, we have proposed three learning algorithms with a regret guarantee

sublinear in the number of arms for rested bandits with discount. Moreover, two of

the three learning algorithms can leverage Gittins index to have a runtime linear

in the number of arms. We have also pointed out the difficulties of minimizing the

regret when learning in restless bandits with average reward criterion.

We have seen that the structure of arms plays a crucial role in Markovian bandit

problems. First, the Whittle index policy is defined for restless Markovian bandits

whose arms satisfy a notion of indexability, but this notion becomes unclear when

some arms admit some local optimal policies that are multichain. Lastly, when

learning in restless bandits, the MDP properties of the bandit, such as the diameter,

the mixing time, and the span of the global bias functions, depend heavily on the

arms’ structure.

This thesis also provides an argument that supports the power of Bayesian algorithms:

They can be easily tailored to the structure of the problem to learn. For instance,

MB-PSRL has a regret guarantee and a runtime scalable in the number of arms

when learning in rested Markovian bandits with discount. Also, RB-TSDE [AM22]

can leverage the Whittle index to have a scalable runtime when learning in restless

Markovian bandits with the average reward criterion. Meanwhile, the optimistic

algorithms that use confidence bonuses on the arms’ state transitions likely have a

runtime non-scalable in the number of arms in learning Markovian bandits.

185



9.2 Future work

There are several directions to extend the work developed in this thesis. Some of

them are outlined in the following.

Computing the Whittle index of arms with a sparse transition structure. The pos-

sibility of designing a Whittle index computation algorithm in restless Markovian

arms with sparse transition matrix warrants further investigation. Many applica-

tions in which the Whittle index policy performs exceptionally well admit a sparse

arm’s transition structure (see, e.g., [WM95; Nin02; AL18], also [WHL20] and

references therein). On the basis of our index computation algorithm, one may

want to investigate the combination of the sparse matrix inversion (see e.g., [DM62;

NR83]) with the Sherman-Morrison-Woodbury formula. In this direction, the work

of [Van91] investigates how the Sherman-Morrison-Woodbury formula can be used

in the inversion of a sparse matrix with dense columns. It would be exciting to adapt

this work to our algorithm.

Upper bounds on the span of the global bias functions of restless bandit and the

number of arms. The ergodicity coefficient of the bandit is used in the recent work

of [AM22] to upper bound the span of the global bias functions when learning in

restless bandits with the average reward criterion. Nevertheless, we still do not

know the optimal upper bound on this span in terms of the number of arms. Our

Theorem 8.11 shows an exponential dependency between an upper bound on the

ergodicity coefficient of the bandit and the number of arms. However, we believe

that this upper bound is not tight for the span of the global bias functions. Indeed,

we have performed a few numerical experiments that advocate a linear dependency

between an upper bound on this span and the number of arms when the condition

of Theorem 8.11 is satisfied. Therefore, we conjecture that the span of the global

bias functions is upper bounded linearly in the number of arms as the following.

Conjecture 9.1

Consider a restless bandit M having n arms. Each arm ÈSi, {0, 1}, {r0
i , r1

i }, {P 0
i ,P 1

i }Í
is an MDP with a finite state space Si and a binary action space {0, 1}. For each arm

i œ [n], let “i be its ergodicity coefficient defined by

“i = 1 ≠ min
si,s

Õ

iœSi

a,aÕœ{0,1}

ÿ

ziœSi

min{P a(si, zi), P aÕ

(sÕ
i, zi)}.
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Let hú be the global optimal bias function of the bandit M in the average reward

criterion. We conjecture that

sp(hú) Æ
nÿ

i=1

sp(ri)

1 ≠ “i
.

Model-free learning algorithms for Markovian bandits. This thesis focuses on model-

based learning algorithms for Markovian bandits. Another direction of research

would be investigating model-free algorithms. For rested bandits with discount, the

work of [Duf95] uses the Q-learning (QL) algorithm to estimate the Gittins index

and softmax for the exploration. Similarly, the work of [AB22] uses a QL-based

algorithm to estimate the Whittle index of undiscounted restless bandits. Meanwhile,

the works of [Jin+18; Wei+20] derive QL-like algorithms with a regret guarantee

when learning in generic MDPs. It would be interesting to investigate how these

works can be connected.

Learning algorithms for restless multi-armed multi-action bandits. Restless multi-

armed multi-action bandits (R(MA)2B) generalize the restless Markovian bandits.

The works of [GHK11; HG15] extend the notion of indexability to R(MA)2B. How-

ever, only the subclass of R(MA)2B with a special monotonic structure is analyzed in

their work. In [GGY22b], a novel LP-update policy is proposed for the finite-horizon

setting. When the number of arms grows to infinity, their policy is proven to achieve

optimality. Moreover, their LP-update policy is applicable for general R(MA)2Bs

(i.e., the indexability condition is not required). A natural extension of our learning

problem is to consider the case where the unknown environment is a R(MA)2B. For

model-free algorithms, the work of [Kil+21] proposes two algorithms: (i) QL-based

algorithm to learn the index policy proposed by [GHK11] and (ii) Lagrange policy

QL algorithm. It is interesting to see how Bayesian approach can be used in this

learning problem.
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Abstract
A Markovian bandit is a sequential decision problem in which the decision maker has to activate a set of

bandit’s arms at each time, and the active arms evolve in a Markovian manner. There are two types of

Markovian bandits: (i) rested bandits where the arms that are not activated (i.e., are passive) remain frozen,

and (ii) restless bandits where the passive arms evolve in a Markovian manner. In general, Markovian bandits

suffer from the curse of dimensionality that often makes the exact solution computationally intractable. So,

one has to resort to tractable heuristics such as index policies. Two celebrated indices are the Gittins index for

rested bandits and the Whittle index for restless bandits.

This thesis focuses on two questions (1) index computation when all model parameters are known and (2)

learning algorithms when the parameters are unknown.

For index computation, we point out the ambiguities in the classical indexability definition and propose

a definition that assures the uniqueness of the Whittle index when this latter exists. We then develop an

algorithm for testing the indexability and computing the Whittle indices of a restless arm. The theoretical

complexity of our algorithm is O(S2.5286), where S is the number of arm’s states.

For learning in rested bandits, we propose modifications of PSRL and UCBVI algorithms that we call MB-PSRL

and MB-UCBVI. We show that they can leverage Gittins index policy to have a regret guarantee and a runtime

scalable in the number of arms. Furthermore, we show that MB-UCRL2, a modification of UCRL2, also has

a regret guarantee scalable in the number of arms. However, MB-UCRL2 has a runtime exponential in the

number of arms. When learning in restless bandits, the regret guarantee depends heavily on the structure

of the bandit. We study how the structure of arms translates into the structure of the bandit. We exhibit a

subclass of restless bandits that are not learnable. We also show that it is difficult to construct a subclass of

restless bandits with a desirable learning structure by only making assumptions about arms.

Résumé
Un bandit markovien est un problème de décision séquentielle dans lequel un sous-ensemble de bras doivent

être activés à chaque instant, et les bras évoluent de manière markovienne. Il y a deux catégories de bandits

markoviens. Si les bras qui ne sont pas activés restent figés, on entre alors dans la catégorie des bandits

markoviens avec repos. S’ils évoluent de manière markovienne, on parle alors de bandit markovien sans repos.

En général, les bandits markoviens souffrent de la malédiction de la dimension qui rend souvent la solution

exacte prohibitive en terme de calculs. Il faut donc recourir à des heuristiques telles que les politiques d’indice.

Deux indices célèbres sont l’indice de Gittins pour les bandits avec repos et l’indice de Whittle pour les bandits

sans repos.

Cette thèse se concentre sur deux questions : (1) le calcul d’indices lorsque tous les paramètres du modèle sont

connus et (2) les algorithmes d’apprentissage lorsque les paramètres sont inconnus.

Pour le calcul de l’indice, nous relevons les ambiguïtés de la définition classique de l’indexabilité et proposons

une définition qui assure l’unicité de l’indice de Whittle quand ce dernier existe. Nous développons ensuite

un algorithme testant l’indexabilité et calculant les indices de Whittle. La complexité théorique de notre

algorithme est O(S2.5286), où S est le nombre d’états du bras.

Pour l’apprentissage dans les bandits avec repos, nous montrons que MB-PSRL et MB-UCBVI, des versions

modifiées des algorithmes PSRL et UCBVI, peuvent tirer parti de la politique d’indice de Gittins pour avoir

une garantie de regret et un temps d’exécution qui passent à l’échelle avec le nombre de bras. De plus, nous

montrons que MB-UCRL2, une version modifiée de UCRL2, possède également une garantie de regret qui

passe à l’échelle. Cependant, MB-UCRL2 a un temps d’exécution exponentiel dans le nombre de bras. Lors de

l’apprentissage dans les bandits sans repos, la garantie de regret dépend fortement de la structure du bandit.

Ainsi, nous étudions comment la structure des bras se traduit dans la structure du bandit. Nous exposons une

sous-classe de bandits sans repos qui ne sont pas apprenables. Nous montrons également qu’il est difficile de

construire des hypothèses sur les bras qui rendent les bandits sans repos apprenables efficacement.
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