

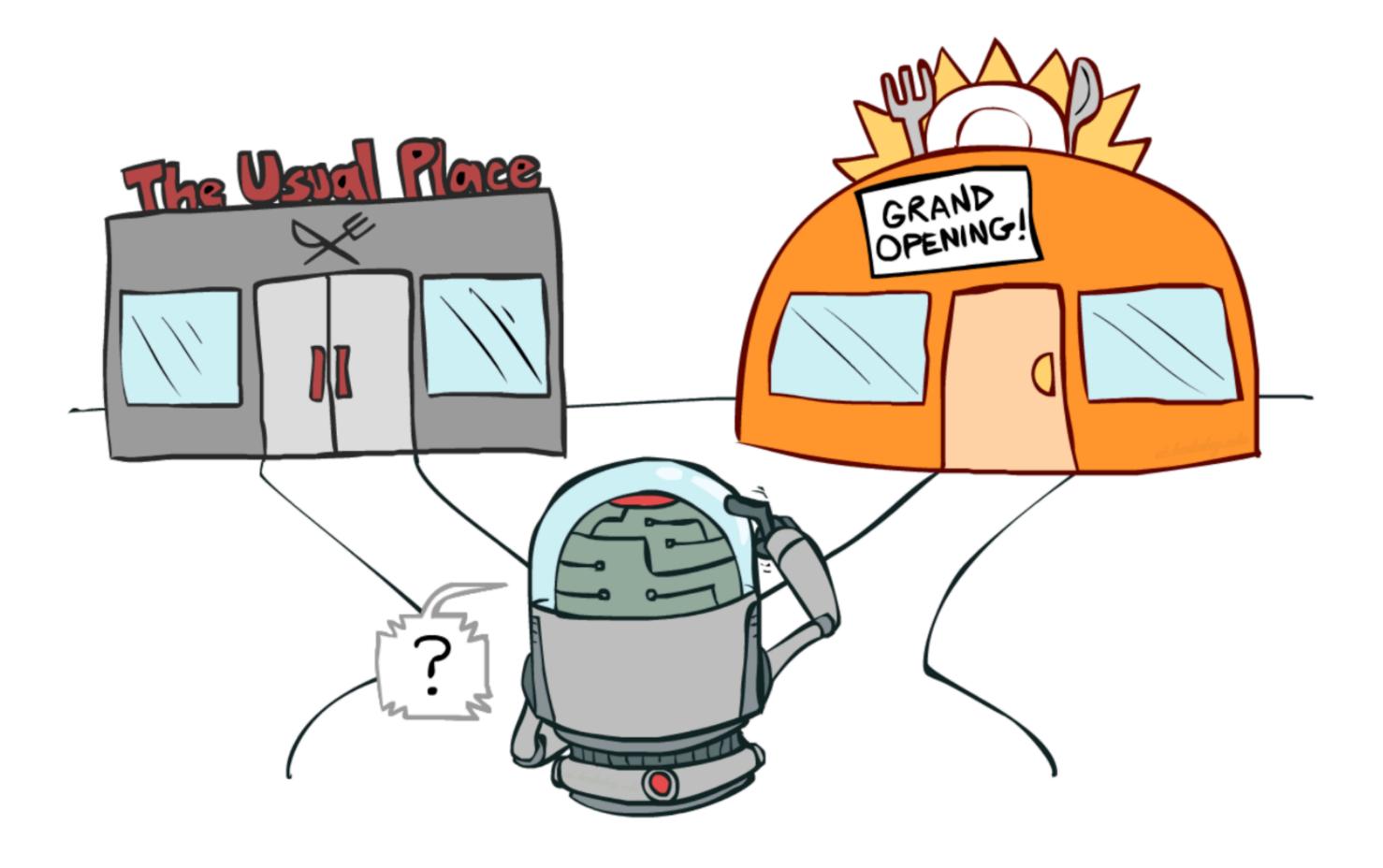
Exploration-Exploitation Dilemma in Multi-Armed Bandit

Kimang KHUN, Ph.D.

Ministry of Industry, Science, Technology & Innovation

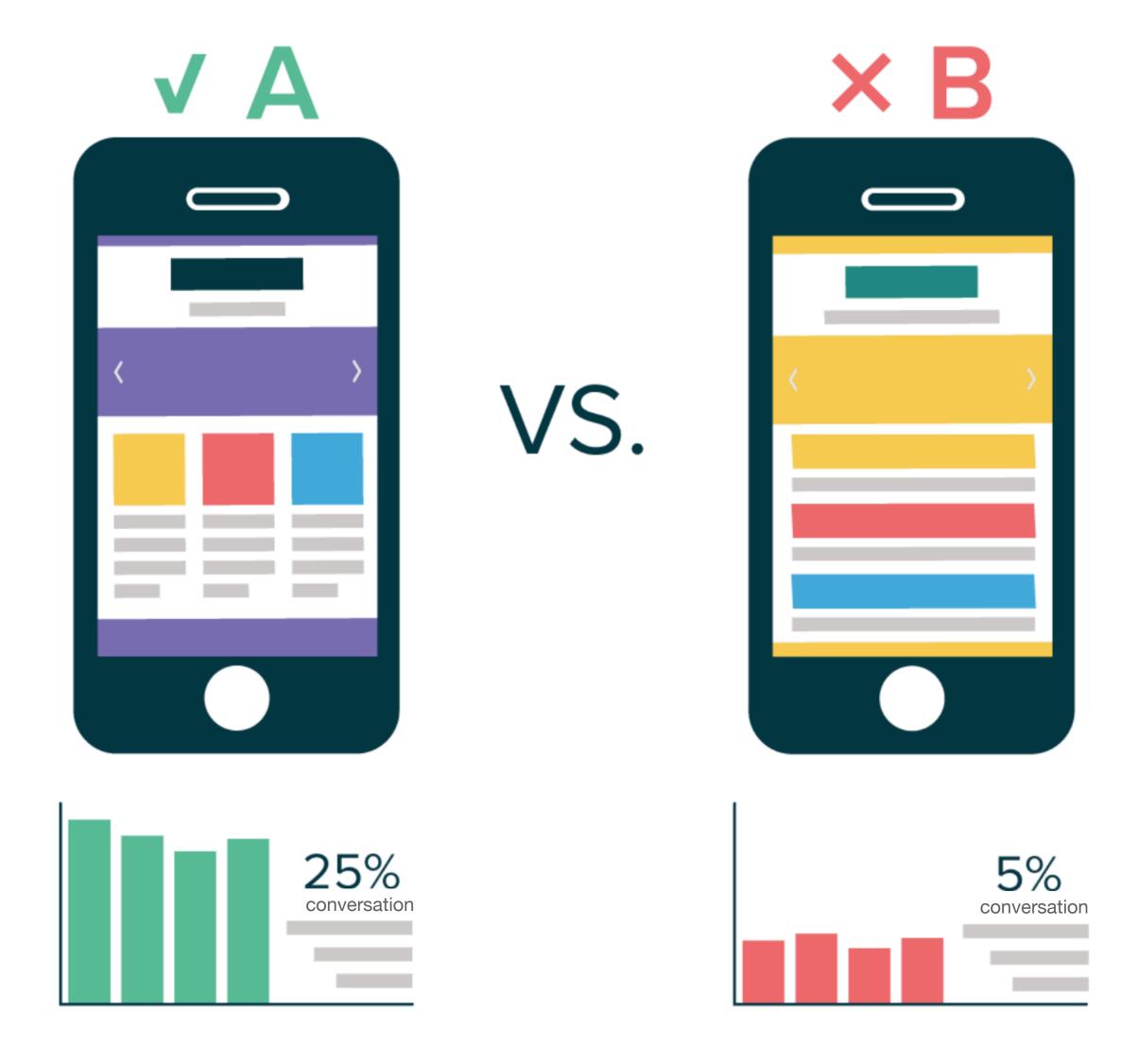
Seminar of AMS Department, Institute of Technology of Cambodia, Phnom Penh

Exploration and Exploitation Dilemma

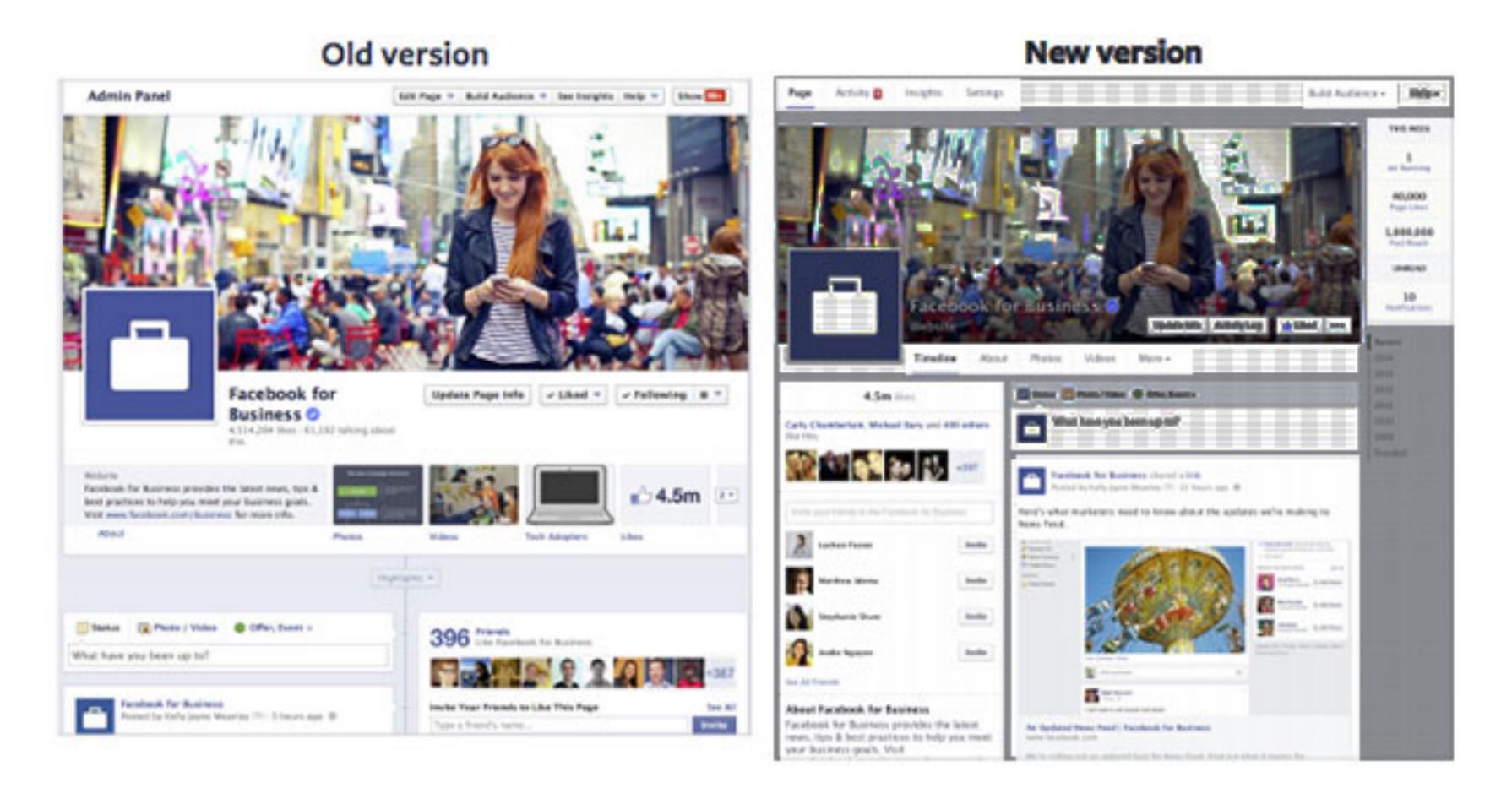


Source: Nicolas Gast's slides

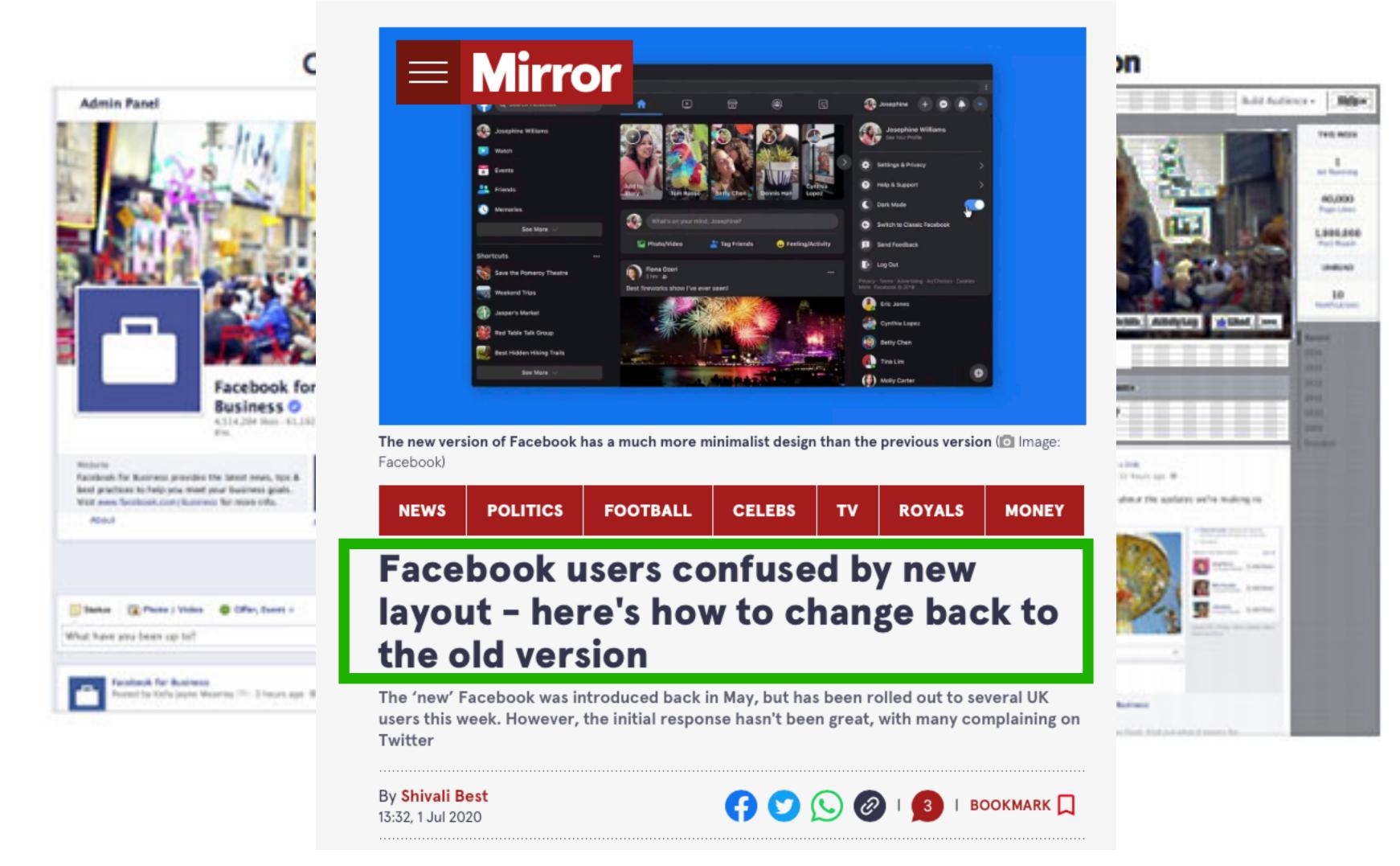
Example: A/B Testing



Example: A/B Testing



Example: A/B Testing



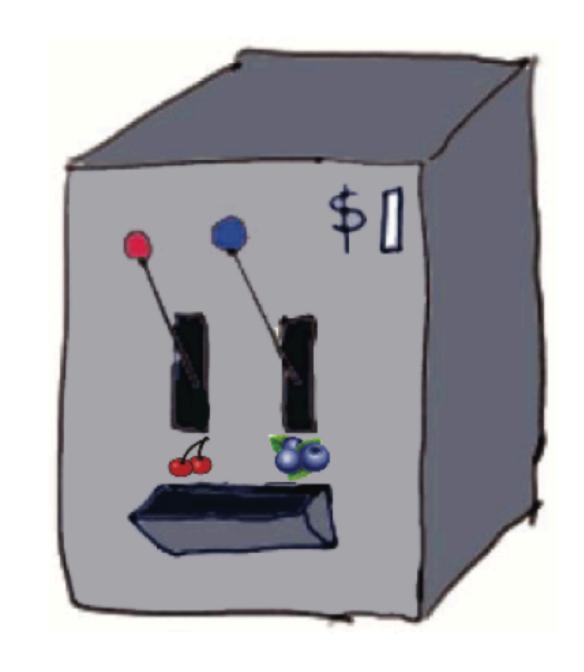
Kimang KHUN

Exploration-Exploitation

What can a scientist do?

We need mathematical formulation:

- 1. to design new models (algorithms)
- 2. to quantify the trade-off

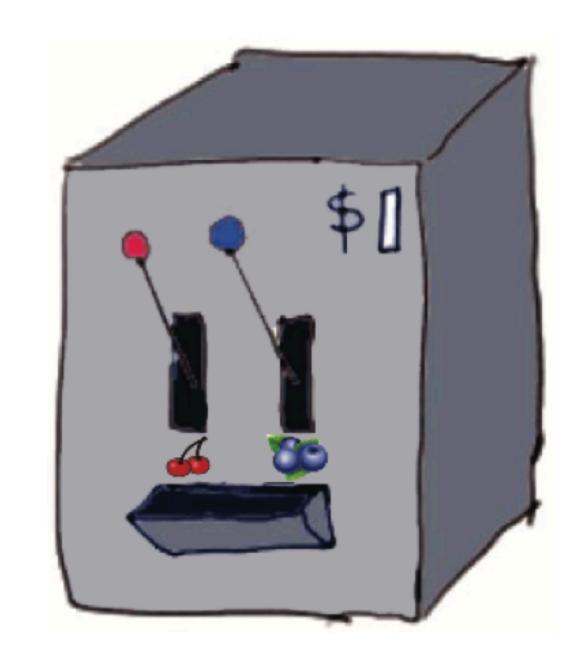


Arm 1 Arm 2 μ_1

Pulling Arm 1 gives 1 w.p. μ_1 or 0 w.p. $1 - \mu_1$.

A possible sequence of outcomes: 1,0,0,1,1,... s.t.

$$\mu_1 = \lim_{T \to \infty} \frac{1}{T} \left(\underbrace{1 + 0 + 0 + 1 + 1 + \dots}_{T \text{ terms}} \right)$$

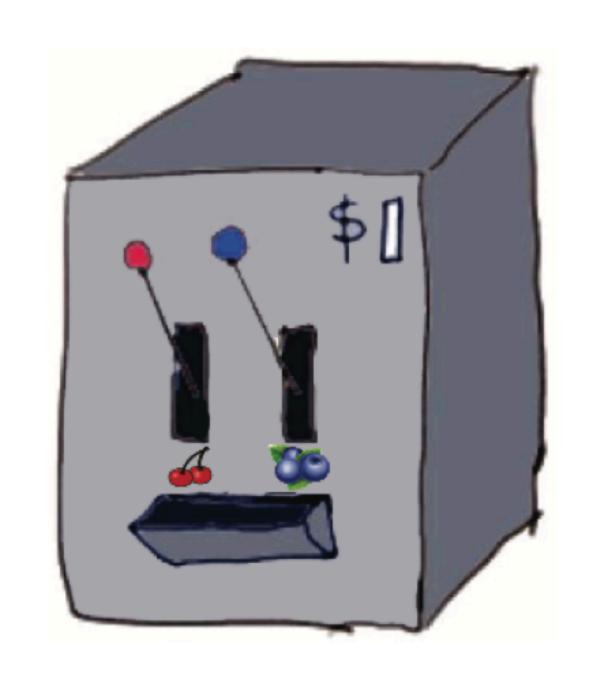


Arm 1 Arm 2 μ_1 μ_2

Pulling Arm 2 gives 1 w.p. μ_2 or 0 w.p. $1 - \mu_2$. A possible sequence of outcomes: 0,0,0,0,1,... s.t.

$$\mu_2 = \lim_{T \to \infty} \frac{1}{T} \left(\underbrace{0 + 0 + 0 + 0 + 1 + \dots}_{T \text{ terms}} \right)$$

T terms

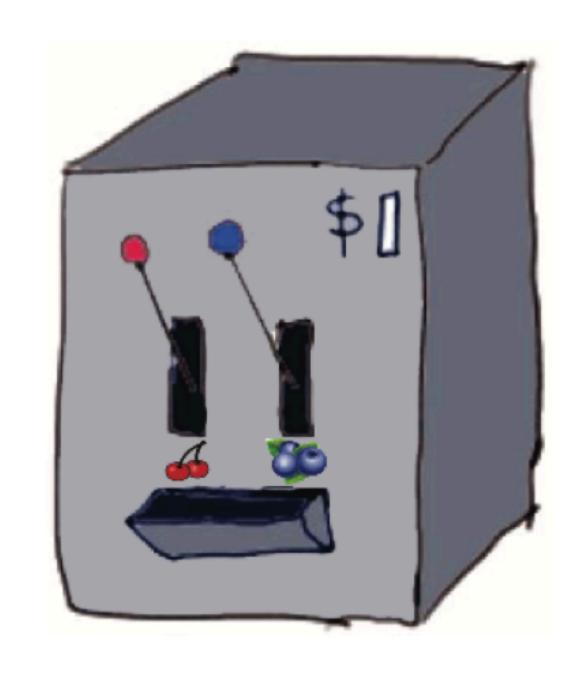


1, 0, 0, 1, 1, 0, 0, 0, 0, 1, ...

Cumulative reward := 1+0+0+1+1+0+0+0+0+1+...

Question: Which arm to pull so that the expected cumulative reward is **maximized**?

Arm 1 Arm 2 μ_1 μ_2



Arm 1 Arm 2 μ_1 μ_2

Question: Which arm to pull so that the expected cumulative reward is maximized?

If μ_1 and μ_2 are KNOWN, then

- always pull Arm 1 if $\mu_1 > \mu_2$
- always pull Arm 2 otherwise.

Challenge: μ_1 and μ_2 are UNKNOWN.

This is called "Stochastic bandit".

Motivation

Maximize clicks

Title	Click probability
"Murder Victim found in an Adult Entertainment Venue"	μ_1
"Headless body found in Topless bar"	μ_2

Choose which title to display. Observe "Click/Not Click".

Clinical trials μ

 μ_2

Choose treatment for patient.

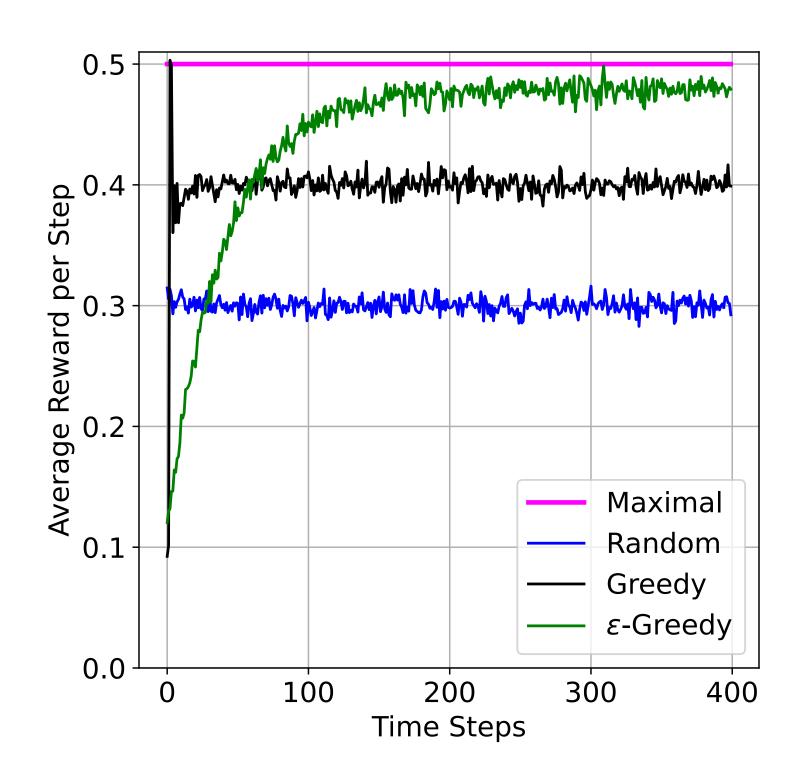
Observe "Heal/Not Heal".

Algorithm Design

- Random: at each decision time, uniformly randomly pull one arm.
- Greedy: initially try each arm the same number of pulls, then commit on the best arm.
- ε -Greedy: w.p. ε , uniformly randomly pull one arm (Exploration), and w.p. 1ε , pull the best arm so far (Exploitation).

Algorithm Design

- Setup: $\mu_1 = 0.1$ and $\mu_2 = 0.5$
- Greedy: try each arm 2 pulls before committing
- ε -Greedy: $\varepsilon = 0.1$



Kimang KHUN
Algorithm Design

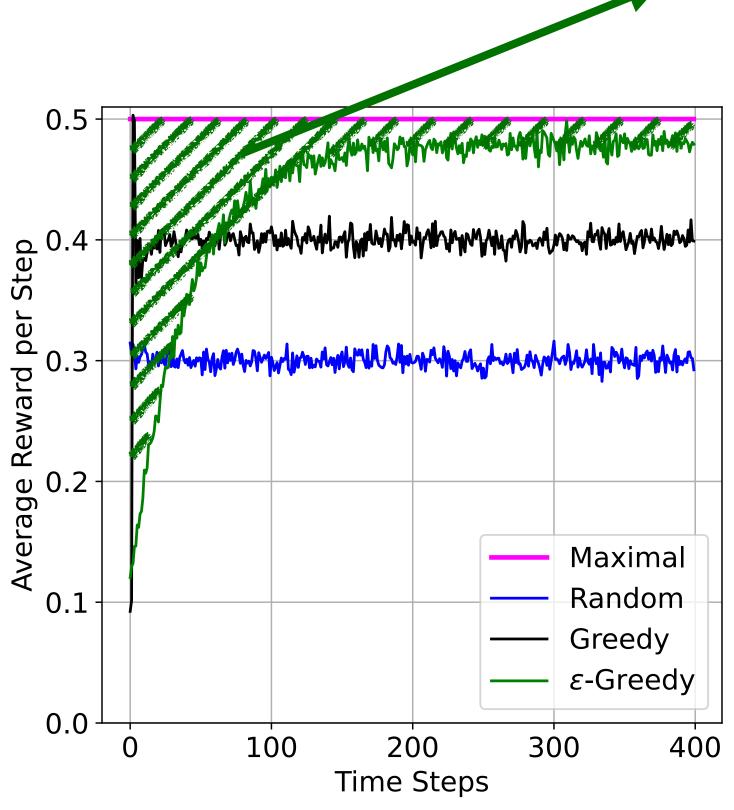
Algorithm Design

- Setup: $\mu_1 = 0.1$ and $\mu_2 = 0.5$

- Greedy: try each arm 2 pulls before committing

- ε -Greedy: $\varepsilon = 0.1$

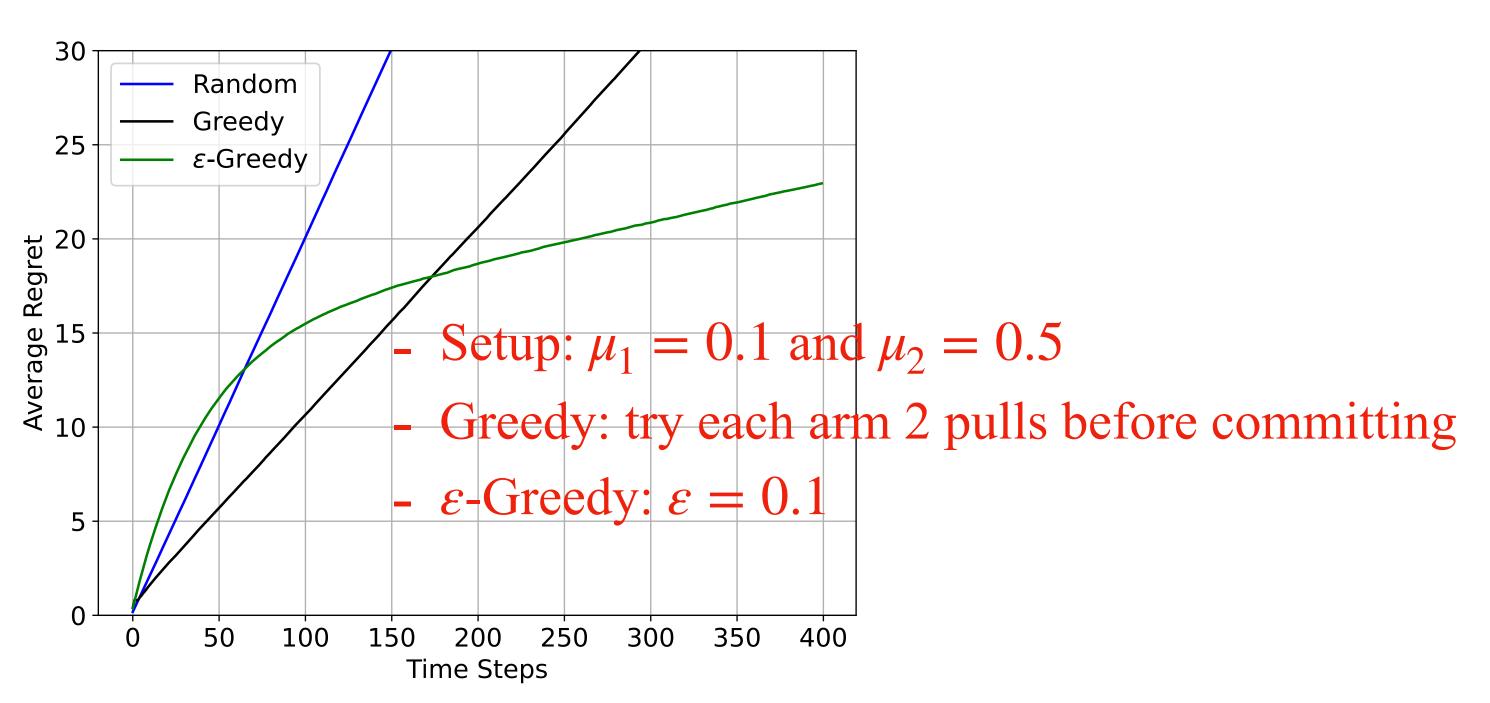
Regret of ε -Greedy



Performance metric: Regret

Regret of $\mathcal{A} := (\underline{\text{maximal}} \text{ cumulative reward})$ - (cumulative reward of \mathcal{A}).

The smaller the regret is, the better \mathcal{A} performs.



Performance metric: Regret

Regret of $\mathcal{A} := (\underline{\text{maximal}} \text{ cumulative reward})$ - (cumulative reward of \mathcal{A}).

The smaller the regret is, the better \mathcal{A} performs.

Let T be total steps.

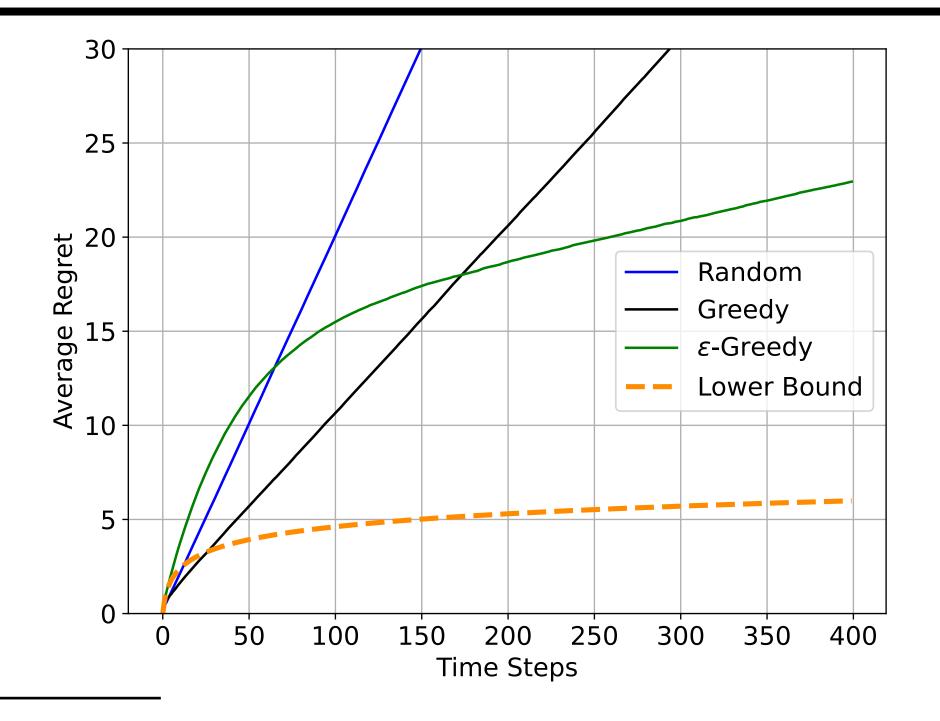
The regret of ε -Greedy is O(T) (this is called linear regret).

Can we do better?

Lower bound on Regret

Theorem 1 (Lai & Robbins, 1985)

There exists a constant c (that depends on μ) s.t. any uniformly efficient algorithm \mathcal{A} satisfies: $Regret\ of\ \mathcal{A} \ge c \ln T.$

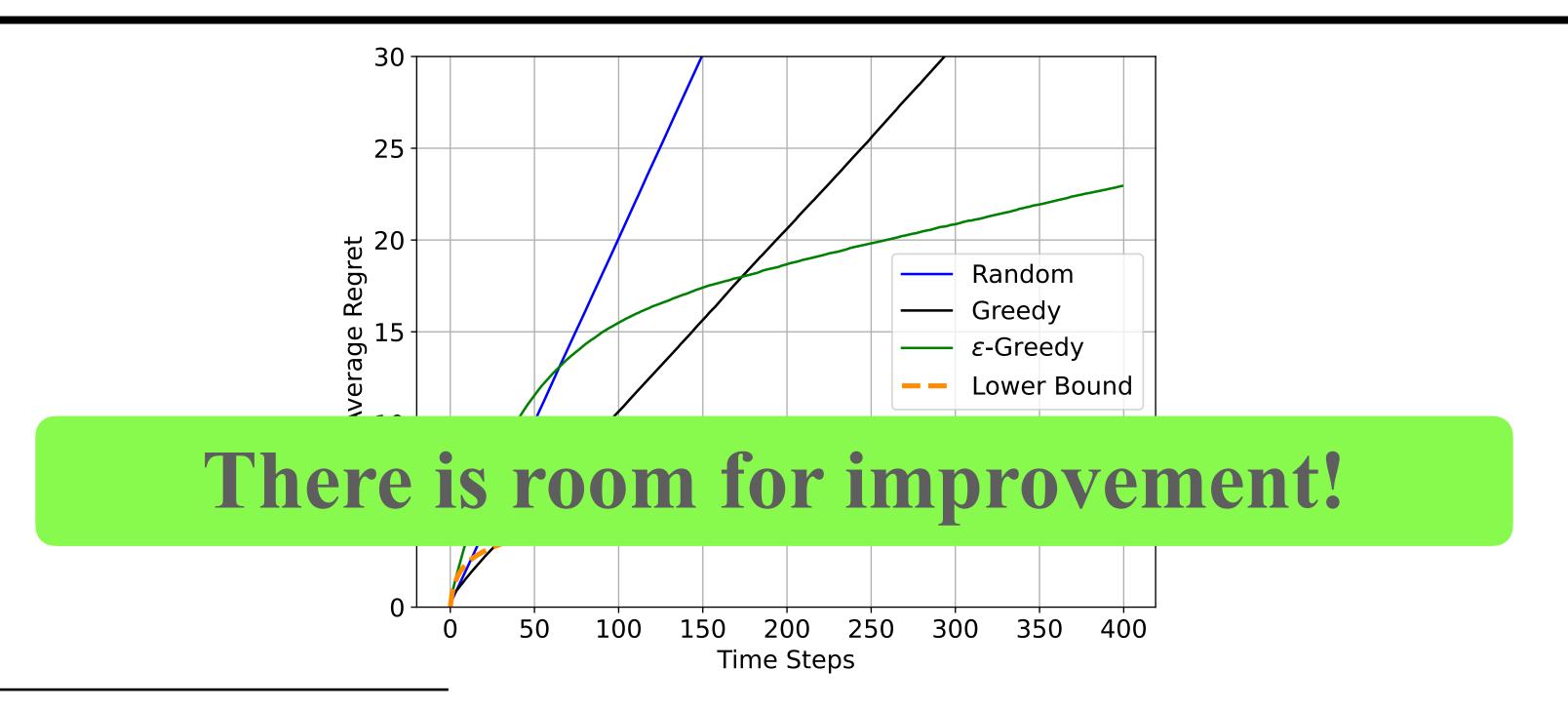


¹Meaning that Regret of \mathscr{A} is $o(T^{\alpha})$ for all μ and α .

Lower bound on Regret

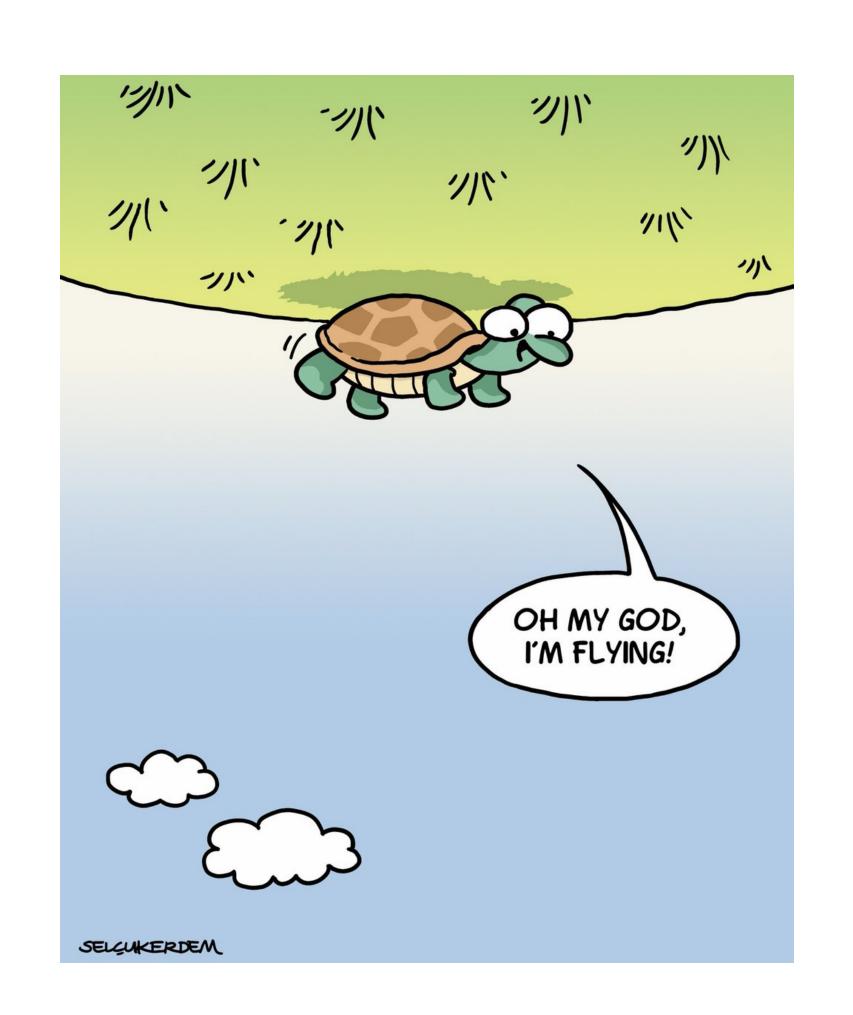
Theorem 1 (Lai & Robbins, 1985)

There exists a constant c (that depends on μ) s.t. any uniformly efficient algorithm \mathcal{A} satisfies: $Regret\ of\ \mathcal{A}\ \geq c\ln T.$



¹Meaning that Regret of \mathscr{A} is $o(T^{\alpha})$ for all μ and α .

Optimism in Face of Uncertainty (OFU)



When you are uncertain, consider the best possible environment.

If the best possible environment is correct

⇒ No reward lost

Exploitation

If the best possible environment is wrong

⇒ Gather useful info.

Exploration

Consider a coin that gives "Head" w.p. μ .

Suppose that you toss the coin N times and observe "Head" n times.

The natural estimator of μ is:

$$\hat{\mu} := \frac{n}{N}$$

By Hoeffding's inequality, we have that 2 for x > 0,

$$\mathbb{P}\left\{-\sqrt{\frac{x}{2N}} + \hat{\mu} \le \mu \le \hat{\mu} + \sqrt{\frac{x}{2N}}\right\} \ge 1 - 2e^{-x}.$$

²under the assumption that all the observations are i.i.d.

Consider a coin that gives "Head" w.p. μ .

Suppose that you toss the coin N times and observe "Head" n times.

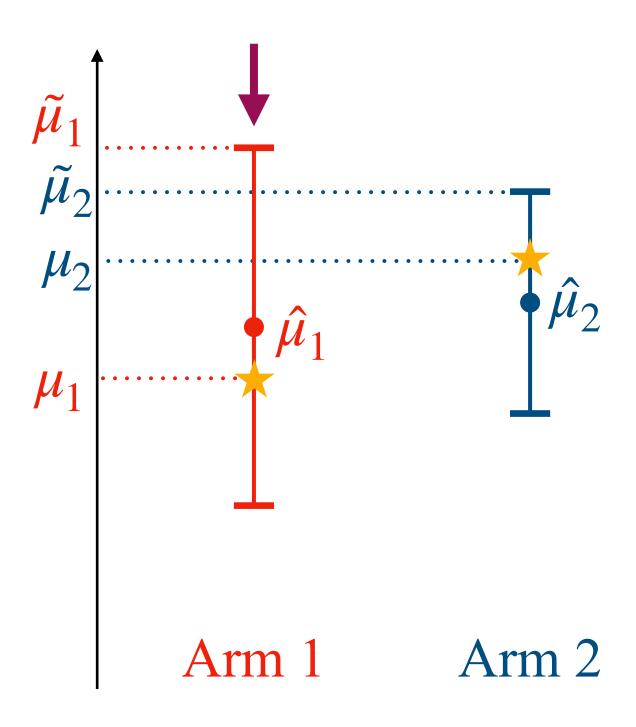
The natural estimator of μ is:

$$\hat{\mu} := \frac{n}{N}$$

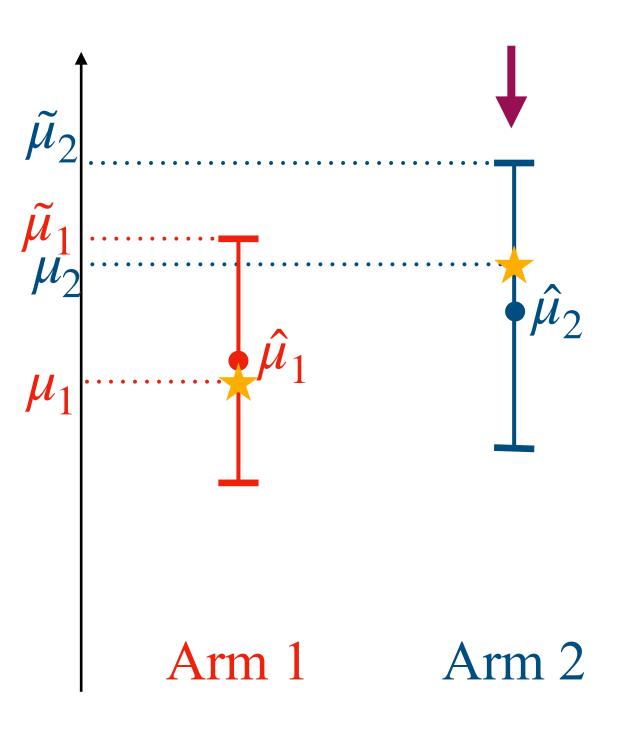
By Hoeffding's inequality, we have that 2 for x > 0,

$$\mathbb{P}\left\{-\sqrt{\frac{x}{2N}} + \hat{\mu} \le \mu \le \hat{\mu} + \sqrt{\frac{x}{2N}}\right\} \ge 1 - 2e^{-x}.$$

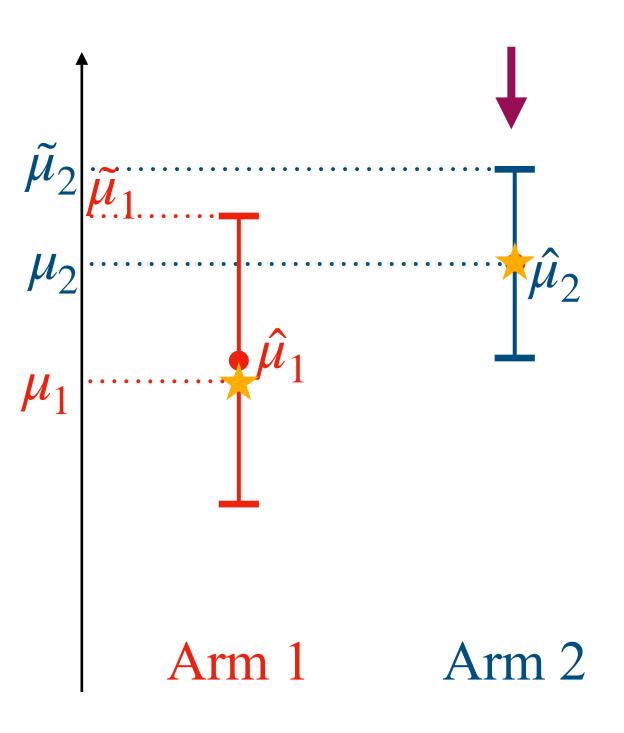
²under the assumption that all the observations are i.i.d.



At time step t

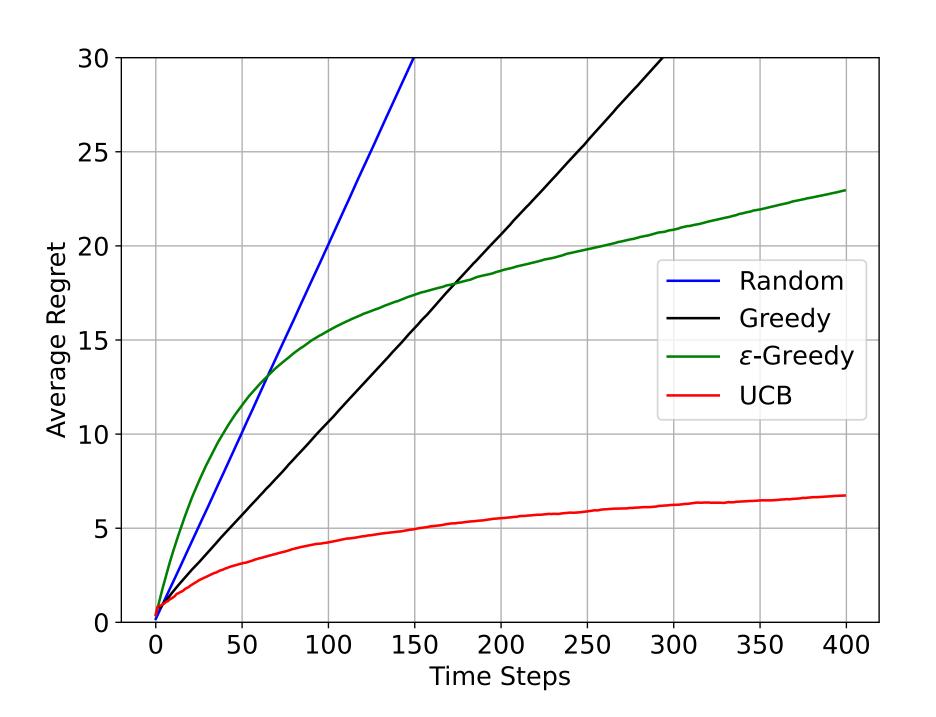


At time step t + 1



At time step t + 2

- Setup: $\mu_1 = 0.1$ and $\mu_2 = 0.5$
- Greedy: try each arm 2 pulls before committing
- ε -Greedy: $\varepsilon = 0.1$



Theorem 2 (Auer et al., 2002):

Regret of UCB $\leq c' \ln T$.

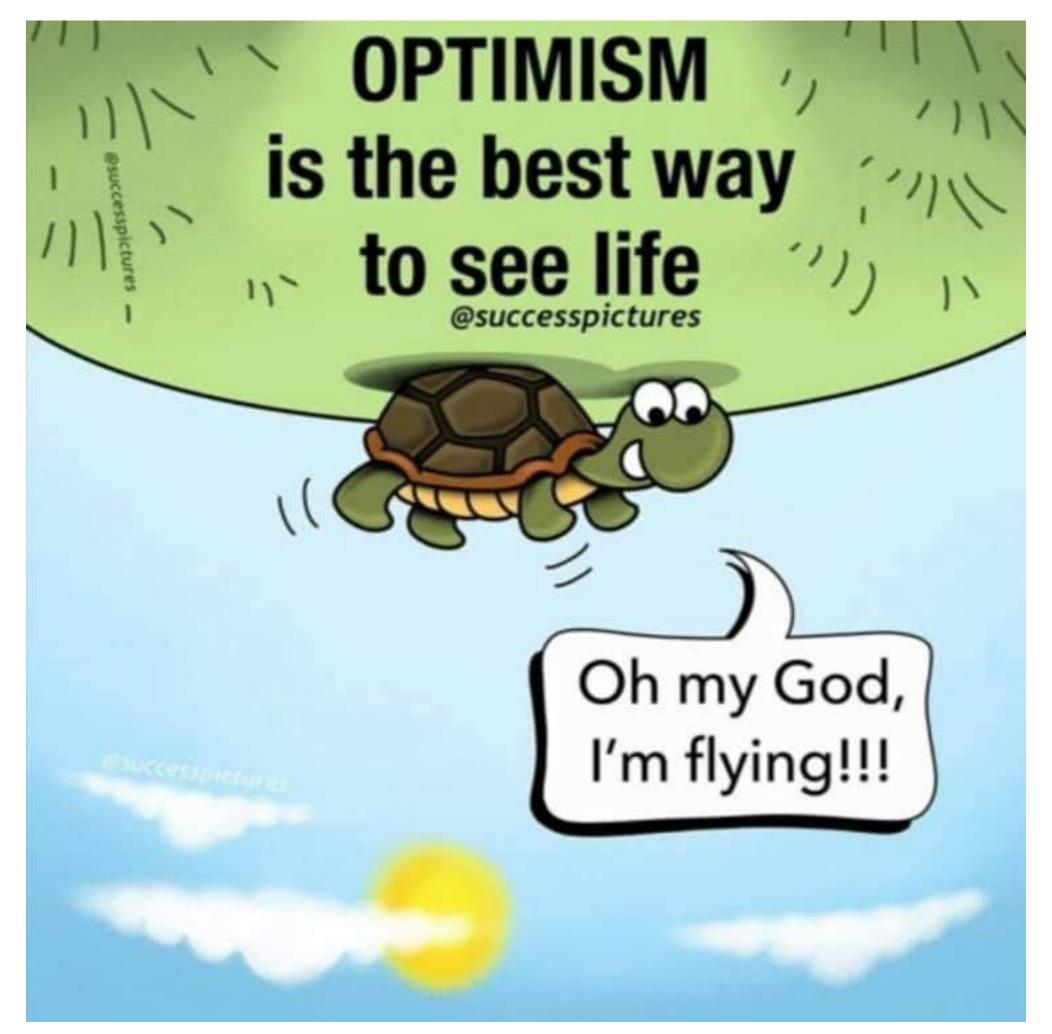
We say that UCB is asymptotically optimal.

Kimang KHUN
Algorithm Design

Conclusion

- Exploration vs. Exploitation (EE) dilemma happens in the world of decision-making under uncertainty.
- Multi-armed bandit (MAB) problem is a mathematical formulation allowing us to consider the EE trade-off and design new algorithms.
- We use Regret to measure the algo.'s performance.
- No algorithm has a regret smaller than $O(\ln T)$ uniformly over all MAB problems.
- UCB algorithm from OFU approach has a regret bounded by $O(\ln T)$ (it is asymptotically optimal).

For more on bandit, check out this book



source: https://twitter.com/parveenkaswan/status/1364791588442890240?lang=zh-Hant

https://kimang18.github.io or khun.kimang@misti.gov.kh

Questions?

Kimang KHUN

Conclusion