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Example: A/B Testing
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Example: A/B Testing
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The new version of Facebook has a much more minimalist design than the previous version (] Image:
Facebook)
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Facebook users confused by new
layout - here's how to change back to
the old version

The ‘new’ Facebook was introduced back in May, but has been rolled out to several UK
users this week. However, the initial response hasn't been great, with many complaining on
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13:32, 1 Jul 2020

Exploration-Exploitation



What can a scientist do?

We need mathematical formulation:
1. to design new models (algorithms)
2. to quantify the trade-off
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Two-Armed Bandit Problem

Pulling Arm 1 gives 1 w.p. p; or O w.p. 1 — ;.

A possible sequence of outcomes: 1,0,0,1,1,... s.t.
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Two-Armed Bandit Problem

Pulling Arm 2 gives 1 w.p. u, or O w.p. 1 — p,.

A possible sequence of outcomes: 0,0,0,0,1,... s.t.
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Two-Armed Bandit Problem

1,0,0,1,1,0,0,0,0, 1, ...

Cumulative reward := 1+0+0+1+1+0+0+0+0+1+ ...

Question: Which arm to pull so that the
expected cumulative reward 1s maximized?

Arm 1 Arm 2
M1 H)
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Two-Armed Bandit Problem

Question: Which arm to pull so that the
expected cumulative reward 1s maximized?

It p; and u, are KNOWN, then

- always pull Arm 1 it y; > p,
- always pull Arm 2 otherwise.

Challenge: 1, and u, are UNKNOWN.

Arm1l Arm?2 This 1s called "Stochastic bandit”.
M1 H)
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Motivation

Maximize clicks

Title Click probability
“Murder Victim found in an Adult Entertainment Venue™ U
“Headless body found 1n Topless bar” Ho

Choose which title to display. Observe “Click/Not Click™.

Clinical trials g, H)

Choose treatment for patient.
Observe “Heal/Not Heal”.
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Algorithm Design

- Random: at each decision time, uniformly randomly pull one arm.
- Greedy: mnitially try each arm the same number of pulls, then

commit on the best arm.

- &-Greedy: w.p. €, uniformly randomly pull one arm (Exploration),

and w.p. 1 — g, pull the best arm so far (Exploitation).
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Algorithm Design

- Setup: y; = 0.1 and pu, = 0.5
- Greedy: try each arm 2 pulls before committing
- e-Greedy: € = 0.1
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Algorithm Design

- Setup: y; = 0.1 and pu, = 0.5

- Greedy: try each arm 2 pulls before committing

- e-Greedy: € = 0.1 Regret of S—Greedy
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Performance metric: Regret

Regret of &/ := (maximal cumulative reward) - (cumulative reward of &f).

The smaller the regret is, the better </ performs.
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Performance metric: Regret

Regret of &/ := (maximal cumulative reward) - (cumulative reward of &f).
The smaller the regret is, the better </ performs.

Let T be total steps.

The regret of e-Greedy 1s O(T) (this 1s called linear regret).

Can we do better?
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Lower bound on Regret

Theorem 1 (La1 & Robbins, 1985)

There exists a constant ¢ (that depends on u) s.t. any uniformly efficient' algorithm o satisfies:
Regretof &/ > cIn'TT.
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IMeaning that Regret of & is o(T%) for all 4 and a.
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Lower bound on Regret

Theorem 1 (La1 & Robbins, 1985)
There exists a constant ¢ (that depends on u) s.t. any uniformly efficient' algorithm o satisfies:
Regretof o/ > cIn'T.
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There is room for improvement!
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IMeaning that Regret of & is o(T%) for all 4 and a.
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Optimism in Face of Uncertainty (OFU)

‘PN )\ 2l

s 7\ . .
/) 73 4 When you are uncertain, consider the

718 7 S
~— 7" i best posmble environment.

If the best possible If the best possible
environment 1s correct environment 1S wrong
= No reward lost = Gather useful 1nfo.
Cﬁ)@ Exploitation Exploration

Kimang KHUN Algorithm Design



Upper Confidence Bound (UCB)

Consider a coin that gives “Head” w.p. u.
Suppose that you toss the coin N times and observe "Head" n times.

The natural estimator of u 1s:

n

/4.=N.

By Hoeffding’s inequality, we have that* for x > 0,

[ X X
[ —[— F+ U< u<pg+4,/— p>1-=2e".
{ 2N =R =h \/ 2N}

under the assumption that all the observations are i.1.d.
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Upper Confidence Bound (UCB)

Consider a coin that gives “Head” w.p. u.
Suppose that you toss the coin N times and observe "Head" n times.
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under the assumption that all the observations are i.1.d.

Kimang KHUN Algorithm Design




Upper Contfidence Bound (UCB)
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Upper Contfidence Bound (UCB)
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Upper Contfidence Bound (UCB)
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Upper Contfidence Bound (UCB)

- Setup: y; = 0.1 and pu, = 0.5

- Greedy: try each arm 2 pulls before committing
- &-Greedy: € = 0.1

N
o

—— Random
—— Greedy
—— &-Greedy
—— UCB

Average Regret
=
Ul

=
o

Ul

o

0 50 100 150 200 250 300 350 400
Time Steps

Kimang KHUN Algorithm Design



Upper Confidence Bound (UCB)

Theorem 2 (Auer et al., 2002):

Regret of UCB < c'InT.

We say that UCB 1s asymptotically optimal.

Kimang KHUN Algorithm Design



Conclusion

— S—

i‘ - Exploat;n VS. liaion (EE) dilemma ape
H in the world of decision-making under uncertainty. 4
| |

- Multi-armed bandit (MAB) problem is a |

\
\

For more on bandit, check out this book

| mathematical formulation allowing us to consider the

’ g Bandit

’ EE trade-off and design new algorithms. : Algorithms

} - We use Regret to measure the algo.’s performance. , ERADA STErESVAN

l - No algorithm has a regret smaller than O(In T) | |y

;‘ | >
|

' uniformly over all MAB problems. W

- UCB algorithm from OFU approach has a regret “L
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OPTIMISM .,
\ _ isthe bestway
- toseelife ) .

@successpictures

Oh my God,
I'm flying!!!

source: https://twitter.com/parveenkaswan/status/13647915884428902407lang=zh-Hant

https://kimang18.qgithub.io or khun.kimang@misti.gov.kh

Questions?
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