

Gentle Introduction to Multi-Armed Bandit Problem

Kimang KHUN, Ph.D. Ministry of Industry, Science, Technology & Innovation

Institute of Digital Research & Innovation Monthly Seminar, Phnom Penh

29th August 2023

Real-world applications

A Multi-Armed Bandit Framework for Recommendations

at Netflix

Jaya Kawale Elliot Chow

NETFLIX

source: https://www.youtube.com/watch?v=kY-BCNHd_dM

source: <u>https://www.amazon.science/blog/a-general-approach-to-solving-bandit-problems</u>

Kimang KHUN

source: https://web.archive.org/web/20161013134841/https:// developer.washingtonpost.com/pb/blog/post/2016/02/08/bandito-a-multi-armedbandit-tool-for-content-testing/

Arm 1 Arm 2

Kimang KHUN

Pulling Arm 1 gives 1 w.p. μ_1 or 0 w.p. $1 - \mu_1$. A possible sequence of outcomes: $1,0,0,1,1,\ldots$ s.t. T terms

$$\lim_{T \to \infty} \frac{1}{T} \left(\underbrace{1 + 0 + 0 + 1 + 1 + \dots}_{T \text{ terms}} \right)$$

Arm 2 Arm 1

Kimang KHUN

Pulling Arm 2 gives 1 w.p. μ_2 or 0 w.p. $1 - \mu_2$. A possible sequence of outcomes: $0, 0, 0, 0, 1, \dots$ s.t. T terms

$$\lim_{T \to \infty} \frac{1}{T} \left(\underbrace{0 + 0 + 0 + 0 + 1 + \dots}_{T \text{ terms}} \right)$$

Arm 1 Arm 2

Kimang KHUN

- $1, 0, 0, 1, 1, 0, 0, 0, 0, 1, \dots$
- Cumulative reward := 1+0+0+1+1+0+0+0+0+1+...
- **Question**: Which arm to pull so that the expected cumulative reward is maximized?

- If μ_1 and μ_2 are KNOWN, then - always pull Arm 1 if $\mu_1 > \mu_2$ - always pull Arm 2 otherwise.

Arm 1 Arm 2

Kimang KHUN

Question: Which arm to pull so that the expected cumulative reward is maximized?

- **Challenge**: μ_1 and μ_2 are UNKNOWN.
- The problem is called "Stochastic bandit".

Motivation

Maximize clicks

Title

"Murder Victim found in an Adult I

"Headless body found in 7

Choose which title to display. Observe "Click/Not Click".

Kimang KHUN

	Click probability
Entertainment Venue"	μ_1
Topless bar"	μ_2

Motivation

Maximize clicks

Title

"Murder Victim found in an Adult E

"Headless body found in "

Choose which title to display. Observe "Click/Not Click".

Clinical trials μ_1

Kimang KHUN

	Click probability
Entertainment Venue"	μ_1
Topless bar"	μ_2

Choose treatment for patient. Observe "Heal/Not Heal".

Exploration-Exploitation Dilemma

Consider a coin that gives "Head" w.p. μ . Suppose that you toss the coin N times and observe "Head" n times. The natural estimator of μ is:

 $\hat{\mu} := \frac{n}{N}.$

Exploration-Exploitation

Exploration-Exploitation Dilemma

Problem 1: non-pulled arms do not reveal rewards. => one should gain information by repeatedly pulling all arms.

Problem 2: pulling bad arm gives small rewards. => one should maximize reward by repeatedly pulling the best arm.

One has to solve two opposite problems.

Kimang KHUN

Exploration-Exploitation

Exploration-Exploitation Dilemma

Problem 1: non-pulled arms do not reveal rewards. => one should gain information by repeatedly pulling all arms. Exploration

Problem 2: pulling bad arm gives small rewards. => one should maximize reward by repeatedly pulling the best arm. **Exploitation**

One has to solve exploration-exploitation dilemma.

Kimang KHUN

Exploration-Exploitation

Algorithm Design

- **Random**: at each decision time, **uniformly randomly** pull one arm. - Greedy: initially try each arm the same number of pulls, then
- always pull the best arm.
- ε -Greedy: w.p. ε , uniformly randomly pull one arm (Exploration), and w.p. $1 - \varepsilon$, pull the best arm so far (Exploitation).

Kimang KHUN

Algorithm Design

- Setup: $\mu_1 = 0.1$ and $\mu_2 = 0.5$

- Greedy: try each arm 2 times, then pull the best
- ε -Greedy: $\varepsilon = 0.1$

Kimang KHUN

Algorithm Design

- Setup: $\mu_1 = 0.1$ and $\mu_2 = 0.5$

- Greedy: try each arm 2 times, then pull the best
- ε -Greedy: $\varepsilon = 0.1$

Kimang KHUN

Performance metric: Regret **Regret** of $\mathscr{A} := (\underline{\text{maximal}} \text{ cumulative reward}) - (cumulative reward of <math>\mathscr{A})$. The smaller the regret is, the better \mathscr{A} performs.

Kimang KHUN

Performance metric: Regret **Regret** of $\mathscr{A} := ($ <u>maximal</u> cumulative reward) - (cumulative reward of \mathscr{A}). The smaller the regret is, the better \mathscr{A} performs. Let T be total steps.

The regret of ε -Greedy is O(T) (this is called linear regret).

Can we do better?

Kimang KHUN

Lower bound on Regret

Theorem 1 (Lai & Robbins, 1985)

¹Meaning that Regret of \mathscr{A} is $o(T^{\alpha})$ for all μ and α .

Kimang KHUN

There exists a constant c (that depends on μ) s.t. any uniformly efficient¹ algorithm \mathcal{A} satisfies: Regret of $\mathscr{A} \geq c \ln T$.

Optimism in Face of Uncertainty (OFU)

Kimang KHUN

When you are uncertain, consider the best possible environment.

If the **best possible** environment is correct \Rightarrow No reward lost

If the **best possible** environment is wrong \Rightarrow Gather useful info. **Exploration**

Consider a coin that gives "Head" w.p. μ . Suppose that you toss the coin N times and observe "Head" n times. The natural estimator of μ is:

By Hoeffding's inequality, we have that² for x > 0,

²under the assumption that all the observations are i.i.d.

Kimang KHUN

Consider a coin that gives "Head" w.p. μ . Suppose that you toss the coin N times and observe "Head" n times. The natural estimator of μ is:

By Hoeffding's inequality, we have that² for x > 0,

²under the assumption that all the observations are i.i.d.

Kimang KHUN

Kimang KHUN

At time step t

At time step t + 1

Kimang KHUN

At time step t + 2

Kimang KHUN

- Setup: $\mu_1 = 0.1$ and $\mu_2 = 0.5$

- Greedy: try each arm 2 pulls before committing
- ε -Greedy: $\varepsilon = 0.1$

Kimang KHUN

Theorem 2 (Auer et al., 2002):

We say that UCB is asymptotically optimal.

Kimang KHUN

Regret of UCB $\leq c' \ln T$.

Conclusion

- Exploration vs. Exploitation (EE) dilemma happens in the world of decision-making under uncertainty. - Multi-armed bandit (MAB) problem is a mathematical formulation allowing us to consider the EE trade-off and design new algorithms. - We use **Regret** to measure the algo.'s performance. - No algorithm has a regret smaller than $O(\ln T)$

uniformly over all MAB problems.

- UCB algorithm from OFU approach has a regret bounded by $O(\ln T)$ (it is asymptotically optimal).

For more on bandit, check out this book

Bandit Algori thms

TOR LATTIMORE CSABA SZEPESVÁRI

Conclusion

source: <u>https://twitter.com/parveenkaswan/status/1364791588442890240?lang=zh-Hant</u>

https://kimang18.github.io or khun.kimang@misti.gov.kh **Questions?**

Kimang KHUN

Conclusion