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Real-world applications

source: https://www.youtube.com/watch?v=kY-BCNHd_dM

source: https://www.amazon.science/blog/a-general-approach-to-solving-bandit-problems

source: https://web.archive.org/web/20161013134841/https://
developer.washingtonpost.com/pb/blog/post/2016/02/08/bandito-a-multi-armed-
bandit-tool-for-content-testing/

https://www.youtube.com/watch?v=kY-BCNHd_dM
https://www.amazon.science/blog/a-general-approach-to-solving-bandit-problems
https://web.archive.org/web/20161013134841/https://developer.washingtonpost.com/pb/blog/post/2016/02/08/bandito-a-multi-armed-bandit-tool-for-content-testing/
https://web.archive.org/web/20161013134841/https://developer.washingtonpost.com/pb/blog/post/2016/02/08/bandito-a-multi-armed-bandit-tool-for-content-testing/
https://web.archive.org/web/20161013134841/https://developer.washingtonpost.com/pb/blog/post/2016/02/08/bandito-a-multi-armed-bandit-tool-for-content-testing/
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Two-Armed Bandit Problem

Arm 1 Arm 2

Pulling Arm 1 gives 1 w.p.  or 0 w.p. .μ1 1 − μ1

μ1

A possible sequence of outcomes:  s.t. 1,0,0,1,1,…
T terms

μ1 = limT→∞
1
T (1 + 0 + 0 + 1 + 1 + …

T terms )
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Arm 1 Arm 2
μ1

Pulling Arm 2 gives 1 w.p.  or 0 w.p. .μ2 1 − μ2

μ2

A possible sequence of outcomes:  s.t. 0,0,0,0,1,…
T terms

μ2 = limT→∞
1
T (0 + 0 + 0 + 0 + 1 + …

T terms )

Two-Armed Bandit Problem
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μ1 μ2
Arm 1 Arm 2

1, 0, 0, 1, 1, 0, 0, 0, 0, 1, …

Cumulative reward 1+0+0+1+1+0+0+0+0+1+ … :=

Question: Which arm to pull so that the 
expected cumulative reward is maximized?

Two-Armed Bandit Problem
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μ1 μ2
Arm 1 Arm 2

Question: Which arm to pull so that the 
expected cumulative reward is maximized?

If  and  are KNOWN, then 
- always pull Arm 1 if  
- always pull Arm 2 otherwise.

μ1 μ2
μ1 > μ2

Two-Armed Bandit Problem

Challenge:  and  are UNKNOWN.μ1 μ2

The problem is called "Stochastic bandit”.
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Motivation
Maximize clicks

Title Click probability
“Murder Victim found in an Adult Entertainment Venue”

“Headless body found in Topless bar”
μ1

μ2

Choose which title to display. Observe “Click/Not Click”.
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Motivation
Maximize clicks

Title Click probability
“Murder Victim found in an Adult Entertainment Venue”

“Headless body found in Topless bar”
μ1

μ2

Choose which title to display. Observe “Click/Not Click”.

Clinical trials μ1 μ2

Choose treatment for patient. 
Observe “Heal/Not Heal”.
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Exploration-Exploitation Dilemma
Consider a coin that gives  “Head” w.p. . 
Suppose that you toss the coin  times and observe "Head"  times. 
The natural estimator of  is: 

.

μ
N n

μ

̂μ :=
n
N
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Exploration-Exploitation Dilemma
Problem 1: non-pulled arms do not reveal rewards. 
=> one should gain information by repeatedly pulling all arms.

Problem 2: pulling bad arm gives small rewards. 
=> one should maximize reward by repeatedly pulling the best arm.

One has to solve two opposite problems.
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Exploration-Exploitation Dilemma
Problem 1: non-pulled arms do not reveal rewards. 
=> one should gain information by repeatedly pulling all arms. Exploration

Problem 2: pulling bad arm gives small rewards. 
=> one should maximize reward by repeatedly pulling the best arm. 
Exploitation

One has to solve exploration-exploitation dilemma.
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Algorithm Design

- Random: at each decision time, uniformly randomly pull one arm. 

- Greedy: initially try each arm the same number of pulls, then 

always pull the best arm. 

- -Greedy: w.p. , uniformly randomly pull one arm (Exploration), 

and w.p. , pull the best arm so far (Exploitation).

ε ε

1 − ε
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- Setup:  and  
- Greedy: try each arm 2 times, then pull the best 
- -Greedy: 

μ1 = 0.1 μ2 = 0.5

ε ε = 0.1

Algorithm Design
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- Setup:  and  
- Greedy: try each arm 2 times, then pull the best 
- -Greedy: 

μ1 = 0.1 μ2 = 0.5

ε ε = 0.1

Algorithm Design

Regret of -Greedyε
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Performance metric: Regret
Regret of   (maximal cumulative reward) - (cumulative reward of ).𝒜 := 𝒜

The smaller the regret is, the better  performs.𝒜
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Let  be total steps.T

Can we do better?

The regret of -Greedy is  (this is called linear regret).ε O(T)

Regret of   (maximal cumulative reward) - (cumulative reward of ).𝒜 := 𝒜

The smaller the regret is, the better  performs.𝒜

Performance metric: Regret
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Lower bound on Regret
Theorem 1 (Lai & Robbins, 1985) 
There exists a constant  (that depends on ) s.t. any uniformly efficient  algorithm  satisfies: 

Regret of  . 
c μ 1 𝒜

𝒜 ≥ c ln T

Meaning that Regret of  is  for all  and .1 𝒜 o(Tα) μ α

There is room for improvement!
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Optimism in Face of Uncertainty (OFU)

When you are uncertain, consider the 
best possible environment.

If the best possible 
environment is correct 

 No reward lost 
Exploitation
⇒

If the best possible 
environment is wrong 

 Gather useful info. 
Exploration
⇒
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Upper Confidence Bound (UCB)
Consider a coin that gives  “Head” w.p. . 
Suppose that you toss the coin  times and observe "Head"  times. 
The natural estimator of  is: 

.

μ
N n

μ

̂μ :=
n
N

under the assumption that all the observations are i.i.d.2

By Hoeffding’s inequality, we have that  for , 

.

2 x > 0

ℙ {−
x

2N
+ ̂μ ≤ μ ≤ ̂μ +

x
2N } ≥ 1 − 2e−x
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Upper Confidence Bound (UCB)
Consider a coin that gives  “Head” w.p. . 
Suppose that you toss the coin  times and observe "Head"  times. 
The natural estimator of  is: 

.

μ
N n

μ

̂μ :=
n
N

under the assumption that all the observations are i.i.d.2

By Hoeffding’s inequality, we have that  for , 

.

2 x > 0

ℙ {−
x

2N
+ ̂μ ≤ μ ≤ ̂μ +

x
2N } ≥ 1 − 2e−x

μ̃
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At time step t

Arm 1 Arm 2

μ̃1
μ̃2
μ2

μ1
̂μ1

̂μ2

Upper Confidence Bound (UCB)
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At time step t + 1

Arm 1 Arm 2

μ̃1

μ̃2

μ2

μ1

̂μ2̂μ1

Upper Confidence Bound (UCB)
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At time step t + 2

Arm 1 Arm 2

μ̃1
μ̃2

μ2

μ1

̂μ2
̂μ1

Upper Confidence Bound (UCB)
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- Setup:  and  
- Greedy: try each arm 2 pulls before committing 
- -Greedy: 

μ1 = 0.1 μ2 = 0.5

ε ε = 0.1

Upper Confidence Bound (UCB)
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We say that UCB is asymptotically optimal.

Theorem 2 (Auer et al., 2002): 

Regret of UCB . ≤ c′ ln T

Upper Confidence Bound (UCB)



Kimang KHUN Conclusion

Conclusion
- Exploration vs. Exploitation (EE) dilemma happens 

in the world of decision-making under uncertainty. 

- Multi-armed bandit (MAB) problem is a 

mathematical formulation allowing us to consider the 

EE trade-off and design new algorithms. 

- We use Regret to measure the algo.’s performance. 

- No algorithm has a regret smaller than  

uniformly over all MAB problems. 

- UCB algorithm from OFU approach has a regret 

bounded by  (it is asymptotically optimal).

O(ln T)

O(ln T)

For more on bandit, check out this book
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Questions?

https://kimang18.github.io or khun.kimang@misti.gov.kh

source: https://twitter.com/parveenkaswan/status/1364791588442890240?lang=zh-Hant

mailto:khun.kimang@misti.gov.kh
https://kimang18.github.io
https://kimang18.github.io
https://twitter.com/parveenkaswan/status/1364791588442890240?lang=zh-Hant

